Abstract
肺组织中的巨噬细胞调控免疫反应对于维持肺部组织稳态至关重要,根据其不同的来源和肺解剖部位分为肺泡巨噬细胞、间质巨噬细胞、血管周围巨噬细胞和炎性巨噬细胞等。肺泡巨噬细胞分布在肺泡腔内,主要负责维持肺泡表面活性物质稳态、抵御病原微生物和调节免疫反应;间质巨噬细胞在肺组织中发挥维持稳态、调节免疫和抗炎的功能;血管周围巨噬细胞具有抗原提呈、免疫调节作用,在抑制肺部炎症、改善肺纤维化以及调控肺肿瘤进展中起着重要作用;炎性巨噬细胞在炎症时由单核细胞分化而来并调控炎症的进程。本文主要讨论了肺组织中不同巨噬细胞的来源以及生理和病理状态下的功能,以探讨可能的治疗靶点。
Keywords: 巨噬细胞, 肺组织, 生理, 病理, 炎症, 免疫, 综述
Abstract
Macrophages are vital in maintaining tissue homeostasis in the lungs by modulating and regulating immune responses. Based on different origins and anatomical locations, macrophages in the lungs are categorized into alveolar macrophages, interstitial macrophages, perivascular macrophages, and inflammatory macrophages. Alveolar macrophages are located in the alveolar spaces and are primarily responsible for maintaining alveolar surfactant homeostasis, defending against pathogens and regulating immune responses. Interstitial macrophages can maintain homeostasis, regulate immunity and anti-inflammation in the lung tissue. Perivascular macrophages play a crucial role in inhibiting lung inflammation, improving pulmonary fibrosis, and regulating lung tumor progression due to antigen-presenting and immunomodulatory effects. Inflammatory macrophages, which are differentiated from monocytes during inflammation, regulate the inflammatory process. This article reviews the origins of various subpopulations of macro-phages in the lung tissue and their physiological and pathological functions as well as discusses the underlying mechanisms and potential therapeutic targets.
Keywords: Macrophage, Lung tissue, Physiological, Pathological, Inflammation, Immune, Review
近年来,肺疾病逐渐成为全球健康领域的重大疾病之一。最新的全球疾病负担报告显示,感染性肺疾病(包括COVID-19、结核病、下呼吸道感染)、COPD、肺癌均位于全球死亡病因前二十[1]。巨噬细胞是肺免疫系统最重要的组成部分,具有不同的来源和募集方式,负责维持体内免疫稳态、免疫监视、清除细胞碎片、修复或释放细胞因子、调节炎症[2]。巨噬细胞的来源及其在肺组织中的定位,以及局部微环境的改变可影响上述功能。近年来,在肺组织中已经发现了许多类型的巨噬细胞。根据其在肺组织中的不同解剖部位,肺巨噬细胞分为肺泡巨噬细胞、间质巨噬细胞、血管周围巨噬细胞等[3-4](图1)。肺巨噬细胞的功能与其所处的微环境紧密相关。本文综述了肺组织中不同类型巨噬细胞的来源及其在生理和病理状态下的功能,通过机制分析来识别其潜在的治疗靶点。
图1. 肺组织中主要巨噬细胞的分布及功能.
间质巨噬细胞分布于肺泡间质和黏膜下层等,在感染、过敏过程中可分泌IL-10,从而发挥抗炎和防止过敏的作用;肺泡巨噬细胞分布于肺泡腔侧,具有维持肺泡表面活性物质稳态、抗病原体感染、影响过敏性哮喘发生发展等作用;血管周围巨噬细胞分布于血管管腔表面约一个细胞厚度的实质区域中,在疾病中起到抑制炎症、改善肺纤维化以及调控肺肿瘤进展等作用. TNF:肿瘤坏死因子;GM-CSF:粒细胞-巨噬细胞集落刺激因子;PPAR:过氧化物酶体增殖物激活受体;iNOS:诱生型一氧化氮合成酶;STAT:信号转导及转录激活蛋白;CCL:趋化因子配体;ANGPT:血管生成素;TIE:血管内皮特异性酪氨酸激酶受体.
1. 肺泡巨噬细胞的生理和病理
肺泡巨噬细胞是组织驻留型巨噬细胞,定位于肺泡组织,与外界密切接触;该细胞主要来源于胚胎祖细胞,部分来源于造血干细胞[5]。研究显示,在GM-CSF缺陷的小鼠中无法检测到肺泡巨噬细胞,这意味着GM-CSF在肺泡巨噬细胞的发育中起着至关重要的作用;在胚胎发育过程中,Ly6ChiCD11bhi的胚胎单核细胞可对GM-CSF产生反应,激活主转录因子PPARγ,进而分化为未成熟的肺泡巨噬细胞[6]。未成熟的肺泡巨噬细胞在胚胎发育16.5 d左右迁移并定植于肺组织[7],然后均匀分布在肺间质中。在胎儿分娩后,这些未成熟的肺泡巨噬细胞会逐渐从肺间质迁移进入肺泡,迅速下调CD11b表达而发育成熟,并在一周内完全定植于肺泡中[8]。
研究表明,肺泡巨噬细胞的自我增殖相关基因表达水平较高,可以在稳态或巨噬细胞未被完全耗竭的状态下进行自我增殖[9-10]。当肺组织面临感染或损伤致原始肺泡巨噬细胞耗竭时,可以通过募集单核细胞进行肺泡巨噬细胞的增殖[10]。在脂多糖诱导的肺部炎症中,肺泡巨噬细胞主要表达CD11b以及低水平的CD11c,这些巨噬细胞由血液单核细胞募集到肺组织而产生,相比正常肺泡巨噬细胞其CD11b和CD11c表达量不同[11]。研究发现,血液单核细胞从血液中趋化至肺组织过程中需要先转化为间质巨噬细胞后再迁移到肺泡腔,这表明间质巨噬细胞可能是介于单核细胞和肺泡巨噬细胞两者间的中间体[12]。另有研究表明,在急性肺损伤中,外周循环单核细胞可以分化为间质巨噬细胞和肺泡巨噬细胞,且间质巨噬细胞可以进一步分化为肺泡巨噬细胞[13]。在博来霉素诱导肺组织纤维化、特发性纤维化以及COVID-19所致肺纤维化等疾病中,应用单细胞测序技术可以观察到间质巨噬细胞向肺泡巨噬细胞分化,在此过程中过渡态的细胞被称为中间型巨噬细胞[14]。间质巨噬细胞与肺泡巨噬细胞间具体相互作用关系需要进一步研究。此外,越来越多的证据表明,不同种类的巨噬细胞还受到表观遗传机制的动态调控[15]。
肺泡巨噬细胞在肺部疾病中发挥着重要作用,主要体现在维持组织稳态、抗病原体感染和调节免疫反应等方面。
1.1. 维持肺泡表面活性物质稳态
肺泡表面活性物质对于维持正常的肺功能和免疫功能至关重要。肺泡表面活性物质由Ⅱ型肺泡上皮细胞产生,其组成成分为90%的脂质和10%的蛋白质。肺泡表面活性物质可以降低肺泡表面张力,防止肺泡塌陷[16]。此外,肺泡表面活性物质中含有的表面活性物质结合蛋白在宿主防御、病原体入侵、微生物聚集、调节炎症反应、免疫抑制等方面发挥着重要作用[17]。
维持肺泡表面活性物质的稳定是肺泡巨噬细胞的主要功能之一。肺泡表面活性物质的产生和代谢紊乱会导致肺部疾病。原发性肺泡蛋白沉积症是由于肺泡表面活性物质未能正常消除而引起呼吸窘迫的一种疾病。从病理生理学角度来看,原发性肺泡蛋白沉积症是由抗GM-CSF抗体产生或GM-CSF受体基因突变引起;在临床上,前者致病较多见(90%以上),后者致病较少见(1%左右)[18]。肺泡表面活性物质可以被肺泡巨噬细胞和Ⅱ型肺泡上皮细胞内化和分解[18]。肺泡巨噬细胞上的受体可以与GM-CSF结合,诱导主转录因子PPARγ生成,导致核受体PPARγ表达上调,从而促进肺泡表面活性物质分解代谢[19]。另外,肺泡巨噬细胞能表达多种基因,促进脂质摄入和分解代谢[20-21],以实现内化和代谢肺泡表面活性物质的功能。
1.2. 抗病毒免疫
已有研究表明病毒可以直接感染肺泡巨噬细胞。如肺泡巨噬细胞在感染甲型流感病毒后,可通过释放大量Ⅰ型干扰素、CCL2、CCL4(在炎症下可促进白细胞积聚)和CCL5(吸引淋巴细胞和单核细胞)等发挥抗病毒作用[22]。另外,肺泡巨噬细胞对病毒感染产生的凋亡细胞具有吞噬作用。
病毒感染初期,肺泡巨噬细胞分泌的Ⅰ型干扰素发挥先天性免疫作用[23],通过作用于周围未感染的细胞,诱导STAT1依赖的抗病毒蛋白产生,直接发挥抗病毒作用[24];还可以诱导病毒感染的细胞启动凋亡并激活NK细胞和T细胞[25],从而阻止病毒在体内复制。研究还发现,在甲型流感病毒感染的急性期,肺泡巨噬细胞可以通过分泌干扰素下调PPARγ的表达,促进感染细胞的凋亡,同时Ⅰ型干扰素也可刺激巨噬细胞向M1型极化,促进炎症反应,阻止感染进一步发展[26]。此外,肺泡巨噬细胞是比较弱的抗原提呈细胞,能产生Ⅰ型干扰素而直接作用于肺气道中CD8+记忆T细胞,并快速启动免疫反应[27]。当病毒感染肺部时,肺泡巨噬细胞迅速耗尽并被单核细胞转化的巨噬细胞所取代[10,28]。研究显示,若肺泡巨噬细胞的绝对数量存在不足而病毒载量变高,Ⅰ型干扰素的产生会减少[28]。体外研究表明,单核细胞来源的肺泡巨噬细胞会响应脂多糖刺激,分泌较大量的角质形成细胞趋化因子和多种细胞因子(如IL-1β、IL-6、IL-12p70和IL-10),促进单核细胞来源的肺泡巨噬细胞向肺组织趋化以及促进炎症的发生发展[2]。在感染恢复期,Ⅰ型干扰素等促炎性细胞因子分泌减少,而体内增多的IL-10、糖皮质激素可促进常驻肺泡巨噬细胞以及单核细胞转化的巨噬细胞极化为M2型,M2型巨噬细胞高表达精氨酸酶-1,可刺激组织修复和细胞生长[29]。
1.3. 抗细菌免疫
肺泡巨噬细胞因其独特的解剖位置、优秀的吞噬能力以及可以表达众多模式识别受体而被认为是理想的人体抗菌细胞。肺泡巨噬细胞防御细菌入侵的方式主要有两种[30]:一是肺泡巨噬细胞能产生一氧化氮以及活性氧,直接杀死细菌。二是肺泡巨噬细胞在炎症环境中被激活,合成并分泌大量TNF,TNF在防御和炎症恢复中发挥着重要的作用。而且,TNF对于肉芽肿的形成、包裹病原体和受损组织、防止炎症进展至关重要[31]。有研究报道了结核分枝杆菌感染后肺泡巨噬细胞能通过产生诱生型一氧化氮合酶在细菌侵入肺组织之前起到消灭细菌的作用[32]。也有研究报道感染结核分枝杆菌时,肺泡巨噬细胞会通过TNF依赖性途径诱导细胞凋亡,这种细胞凋亡可减少体内病原体[33]。研究显示减毒结核分枝杆菌菌株比强毒结核分枝杆菌菌株能诱导更多的肺泡巨噬细胞凋亡[34]。综上,肺泡巨噬细胞分泌的一氧化氮、活性氧和TNF可以起到杀菌和抑制感染进展的作用。
1.4. 在过敏性哮喘中的作用
当Th2或Th17免疫系统对空气中的无害物质作出反应时会引发过敏性哮喘[35]。肺泡巨噬细胞在过敏性哮喘引起的气道炎症中发挥重要作用[36]。肺泡巨噬细胞的最初始功能是胞吞作用,胞吞过程涉及识别、吞噬和消化这些死亡、垂死或应激的细胞。在不同类型及不同严重程度的哮喘患者中,均可观察到胞吞作用增多[37-39]。当致敏颗粒被过敏性哮喘患者吸入时,肺泡巨噬细胞因其独特的解剖位置是最先暴露的免疫细胞,在哮喘的炎症反应发生发展中起着重要作用。呼吸道内也有大量微生物定植[40]。已有研究表明哮喘患者肺泡巨噬细胞的吞噬能力受损[41]。最近一项研究显示,气道菌群失调可导致肺泡巨噬细胞对流感嗜血杆菌和金黄色葡萄球菌的吞噬作用减弱从而加重哮喘[42]。还有研究发现,氧化应激损伤和肺泡巨噬细胞吞噬能力减弱会加重微生物对气道的损伤,导致重症哮喘[43]。
哮喘患者中肺泡巨噬细胞能参与炎症介质和抗炎分子的产生,其中炎症介质主要有IL-6、IL-8、TNF-α和IL-1β(患者中均有增加)[44]。已有研究显示,中性粒细胞性哮喘与TNF和IL-1途径有关,而TNF和IL-1途径又与肺泡巨噬细胞释放的IL-1增加有关[45-46]。此外,哮喘患者中肺泡巨噬细胞释放的IL-1β和IL-6可以促进CD4+细胞产生IL-5,这可能会增强哮喘患者气道中的嗜酸性粒细胞活化[47]。IL-10是气道炎症反应中重要的抗炎分子,肺泡巨噬细胞表达更高水平的IL-10 mRNA[48],但哮喘患者中IL-10水平普遍降低[36],推测哮喘患者中肺泡巨噬细胞对IL-10具有转录或翻译的调控作用。
2. 间质巨噬细胞的生理和病理
在胚胎发育期间,肺组织中的胚胎F4/80谱系巨噬细胞均匀分布在整个肺间质中。这些来自卵黄囊前体的F4/80谱系巨噬细胞称为原始巨噬细胞,其产生早于血细胞生成[49]。出生后第1周内,F4/80谱系巨噬细胞优先扩散到间皮下和血管周围区域,并维持在肺间质中。在同一时期,一群来自骨髓的巨噬细胞开始进入肺部,广泛分布在肺间质空间,并主要定位于肺实质中,逐渐取代了该区域的F4/80谱系巨噬细胞[8]。
目前,间质巨噬细胞消耗后的募集机制仍不清楚。研究表明,间质巨噬细胞与肺泡巨噬细胞一样可以自我更新,而间质巨噬细胞的寿命很长,并且在稳定状态下其再生速度很慢,偶尔可由循环单核细胞补充,当肺组织面临创伤、炎症或其他消耗间质巨噬细胞的疾病时,募集的单核细胞会表现出许多间质巨噬细胞的特征[50]。另有研究表明,间质巨噬细胞可以在稳态和炎症期间通过循环前体细胞进行补充[8]。
肺间质巨噬细胞难以通过细胞表面标志物进行分离,因此对其研究相比肺泡巨噬细胞困难且滞后。近年来,借助流式细胞分析和特殊表面标记抗体可以更清晰地分析间质巨噬细胞并对其进行相关研究。有研究将间质巨噬细胞分为三类:间质巨噬细胞1(CD11cloMHCⅡlo)、间质巨噬细胞2(CD11cloMHCⅡhi)以及间质巨噬细胞3(CD11chiMHCⅡhi)[50]。三者在不同类型的促炎性细胞因子、趋化因子配体、MHCⅡ、CD11c、CD206和Lyve-1表达方面均有差异。事实上,间质巨噬细胞1与间质巨噬细胞2非常相似,唯一区别是MHCⅡ基因表达的差异。但是,它们与间质巨噬细胞3有很大差别:间质巨噬细胞3中MMP8、MMP9、甘露糖受体1和V集以及免疫球蛋白结构域4的表达水平均低于间质巨噬细胞1和间质巨噬细胞2[51]。为应对各种微生物及其产物,间质巨噬细胞提高了稳态下分泌IL-10的能力[52]。在环境免疫因素如脂多糖或CpG-DNA刺激时,人和小鼠中IL-10表达均增加[52-53]。根据这一特征,推测间质巨噬细胞可能具有监管的作用。此外,间质巨噬细胞也可能在过敏性哮喘中发挥作用。已有研究证实接触脂多糖和CpG-DNA可以扩增间质巨噬细胞从而预防气道过敏[54-55]。在对小鼠哮喘模型的研究中发现,间质巨噬细胞的免疫调节活性均由IL-10介导[53,56]。实验还证明,在IL-10基因缺陷小鼠中,间质巨噬细胞的免疫调节功能也会受损[57]。
3. 血管周围巨噬细胞的生理和病理
血管周围巨噬细胞为距离血管管腔表面约一个细胞厚度(不超过15 µm)或与其直接接触的巨噬细胞,位于血管周围的微小实质区域中[4,58]。相比之下,肺组织中的血管周围巨噬细胞更靠近毛细血管和肺泡,可以直接穿过内皮细胞间隙,并且靠近血管的近腔侧[58-59]。因此,血管周围巨噬细胞被认为是一种特殊的间质巨噬细胞,而且其补充和募集方式与间质巨噬细胞相同。越来越多的研究表明,部分血管周围巨噬细胞与血管有着密切联系,并在稳态和疾病中发挥异于间质巨噬细胞的特定功能[4]。
在正常肺组织中,血管周围巨噬细胞包绕着血管内皮细胞,可以执行抗原提呈和免疫调节的功能。从肺泡间质中分离出的血管周围巨噬细胞可以在体外提呈抗原并诱导T细胞活化[58]。此外,其可以通过限制树突状细胞在肺部的迁移和成熟来抑制空气中过敏物导致的过敏反应[56]。综上,血管周围巨噬细胞在维持体内稳态中执行一系列调节和保护功能,以维持组织完整性。
在疾病状态下,血管周围巨噬细胞同样发挥着重要作用。在肺组织炎症中,血管周围巨噬细胞还具有抑制免疫以及抗炎特性,可在炎症中释放大量IL-10;而IL-10是一种免疫抑制细胞因子,可抑制肺部炎症[56,60]。在博来霉素诱导的肺损伤模型中,血管周围巨噬细胞可以释放Wnt3A,诱导内皮β-连环蛋白介导的信号转导并上调Jagged 1表达,促使血管附近的成纤维细胞通过Notch途径产生和释放胶原纤维来改善肺纤维化[61-62]。在肿瘤中,肿瘤血管周围有一类巨噬细胞能特异性表达TIE2。研究表明,TIE2表达阳性的血管周围巨噬细胞在肿瘤血管的形成和生长中起着至关重要的作用[63]。在肿瘤组织的血管内皮细胞中,血管生成素2的表达上调会导致血管周围巨噬细胞中TIE2磷酸化,从而促进血管生成相关细胞因子,促使肿瘤血管生成,导致肿瘤进展[64]。此外,血管周围巨噬细胞还增加了IL-10和CCL17的表达(均为体外T细胞增殖抑制剂),从而增强了TIE2表达阳性的血管周围巨噬细胞的免疫抑制功能[65]。
4. 炎性巨噬细胞和肺内其他类型巨噬细胞的生理和病理
当机体处于稳态时,肺部的巨噬细胞可以进行自我更新,并根据各自位置发挥功能[3];当肺组织出现炎症时,炎性巨噬细胞由单核细胞分化而来,可渗透至炎症组织并调控炎症的进程[66]。此外,也有部分巨噬细胞仍保持其原始状态,在急性肺损伤期间极化为M1型和M2型细胞,表达不同的细胞表面标志物并在炎症中发挥不同作用[67]。
近年来,随着流式细胞分析、单细胞测序等技术的发展,越来越多特殊类型的巨噬细胞如神经相关巨噬细胞、肿瘤相关巨噬细胞等受到关注[62]。然而,神经中驻留以及募集巨噬细胞的具体作用机制仍未知[68]。肿瘤微环境中含有许多巨噬细胞[69]。研究表明,肺癌中的巨噬细胞最初极化为促肿瘤生长表型,同时可抑制T淋巴细胞的活性[70]。也有研究发现巨噬细胞还能参与肿瘤进展,包括血管生成、肿瘤细胞侵袭以及转移,甚至刺激肿瘤细胞突破生长和持续增长[71]。
5. 结语
随着对肺组织内巨噬细胞认识的不断加深,有关直接或间接作用于肺巨噬细胞治疗效果的研究不断发展[72-73]。因此,在多种肺部疾病的治疗中,靶向作用于巨噬细胞的治疗逐渐成为新策略。研究发现,通过阻断GM-CSF可以减少巨噬细胞的过度促炎,减轻COVID-19带来的炎症风暴[72]。直接消耗单核细胞转化的肺泡巨噬细胞可以减少炎症引起的肺损伤和肺纤维化[10]。巨噬细胞在COPD两种重要的临床表型——肺气肿和慢性支气管炎的进展中发挥着重要作用:在肺气肿表型中,巨噬细胞更倾向于极化为M1型;在慢性支气管炎表型中,巨噬细胞更倾向于极化为M2型[74]。从COPD患者采集的支气管肺泡灌洗液中发现肺泡巨噬细胞增多[75]。因此,巨噬细胞可能成为COPD治疗的关键靶点。研究显示,巨噬细胞与化疗反应和耐药性有关,并调节免疫抑制反应。靶向和调节巨噬细胞的癌症治疗策略有很多,如使用抗血管内皮生长因子受体能起到识别吞噬肿瘤细胞、阻断促肿瘤生长的作用[76];使用抗免疫抑制细胞因子、蛋白抑制剂和免疫检查点抑制剂能刺激T淋巴细胞活性、重编程肿瘤相关巨噬细胞、抑制肿瘤生长微环境,并通过抗CC趋化因子受体2或抗集落刺激因子1受体阻断单核细胞的募集[77]。这些研究仍处于实验或临床前研究阶段,真正转化为临床应用还需要相当长的时间。
综上所述,肺泡巨噬细胞在体内稳态和疾病方面已有不少研究。特定解剖部位的其他巨噬细胞,如间质巨噬细胞、血管周围巨噬细胞、肿瘤相关巨噬细胞和神经相关巨噬细胞等需要进一步研究。此外,了解不同类型巨噬细胞在静息和疾病状态下的生物学功能可更好地了解肺部疾病的机制,并为新的疾病治疗方案提供更多借鉴和参考。
Acknowledgments
研究得到国家自然科学基金(82272191)支持
Acknowledgments
This work was supported by the National Natural Science Foundation of China (82272191)
[缩略语]
2019冠状病毒病(coronavirus disease 2019,COVID-19);慢性阻塞性肺疾病(chronic obstructive pulmonary disease,COPD);粒细胞-巨噬细胞集落刺激因子(granulocyte-macrophage colony-stimulating factor,GM-CSF);过氧化物酶体增殖物激活受体(peroxisome proliferator activated receptor,PPAR);分化抗原(cluster of differentiation,CD);趋化因子配体(chemokine ligand,CCL);信号转导及转录激活蛋白(signal transducer and activator of transcription,STAT);肿瘤坏死因子(tumor necrosis factor,TNF);辅助性T细胞(helper T cell,Th细胞);信使RNA(messenger RNA,mRNA);主要组织相容性复合体(major histocompatibility complex,MHC);淋巴管内皮透明质酸受体(lymphatic vessel endothelial receptor,Lyve);基质金属蛋白酶(matrix metalloproteinase,MMP);血管内皮特异性酪氨酸激酶受体(tyrosine kinase receptors,TIE)
利益冲突声明
所有作者均声明不存在利益冲突
Conflict of Interests
The authors declare that there is no conflict of interests
医学伦理
研究不涉及人体或动物实验
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors
参考文献(References)
- 1.GBD 2021 Causes of Death Collaborators . Global burden of 288 causes of death and life expectancy decomposi-tion in 204 countries and territories and 811 subnational locations, 1990—2021: a systematic analysis for the Global Burden of Disease Study 2021[J]. Lancet, 2024, 403(10440): 2100-2132. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.SHI T, DENNEY L, AN H, et al. Alveolar and lung interstitial macrophages: definitions, functions, and roles in lung fibrosis[J]. J Leukoc Biol, 2021, 110(1): 107-114. [DOI] [PubMed] [Google Scholar]
- 3.GARBI N, LAMBRECHT B N. Location, function, and ontogeny of pulmonary macrophages during the steady state[J]. Pflugers Arch, 2017, 469(3-4): 561-572. 10.1007/s00424-017-1965-3 [DOI] [PubMed] [Google Scholar]
- 4.LAPENNA A, DE PALMA M, LEWIS C E. Perivascu-lar macrophages in health and disease[J]. Nat Rev Immunol, 2018, 18(11): 689-702. [DOI] [PubMed] [Google Scholar]
- 5.EPELMAN S, LAVINE K J, RANDOLPH G J. Origin and functions of tissue macrophages[J]. Immunity, 2014, 41(1): 21-35. 10.1016/j.immuni.2014.06.013 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.GUILLIAMS M, DE KLEER I, HENRI S, et al. Alveolar macrophages develop from fetal monocytes that differ-entiate into long-lived cells in the first week of life via GM-CSF[J]. J Exp Med, 2013, 210(10): 1977-1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.EVREN E, RINGQVIST E, TRIPATHI K P, et al. Distinct developmental pathways from blood monocytes generate human lung macrophage diversity[J]. Immunity, 2021, 54(2): 259-275.e7. 10.1016/j.immuni.2020.12.003 [DOI] [PubMed] [Google Scholar]
- 8.TAN S Y, KRASNOW M A. Developmental origin of lung macrophage diversity[J]. Development, 2016, 143(8): 1318-1327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.SOUCIE E L, WENG Z, GEIRSDÓTTIR L, et al. Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells[J]. Science, 2016, 351(6274): aad5510. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.HOU F, XIAO K, TANG L, et al. Diversity of macro-phages in lung homeostasis and diseases[J]. Front Immunol, 2021, 12: 753940. 10.3389/fimmu.2021.753940 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.JANSSEN W J, BARTHEL L, MULDROW A, et al. Fas determines differential fates of resident and recruited macrophages during resolution of acute lung injury[J]. Am J Respir Crit Care Med, 2011, 184(5): 547-560. 10.1164/rccm.201011-1891OC [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.LANDSMAN L, JUNG S. Lung macrophages serve as obligatory intermediate between blood monocytes and alveolar macrophages[J]. J Immunol, 2007, 179(6): 3488-3494. [DOI] [PubMed] [Google Scholar]
- 13.DANG W, TAO Y, XU X, et al. The role of lung macro-phages in acute respiratory distress syndrome[J]. Inflamm Res, 2022, 71(12): 1417-1432. 10.1007/s00011-022-01645-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.GU Y, LAWRENCE T, MOHAMED R, et al. The emerging roles of interstitial macrophages in pulmonary fibrosis: a perspective from scRNA-seq analyses[J]. Front Immunol, 2022, 13: 923235. 10.3389/fimmu.2022.923235 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.ARAN D, LOONEY A P, LIU L, et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage[J]. Nat Immunol, 2019, 20(2): 163-172. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.VELDHUIZEN E J, HAAGSMAN H P. Role of pulmo-nary surfactant components in surface film formation and dynamics[J]. Biochim Biophys Acta, 2000, 1467(2): 255-270. [DOI] [PubMed] [Google Scholar]
- 17.GLASSER J R, MALLAMPALLI R K. Surfactant and its role in the pathobiology of pulmonary infection[J]. Microbes Infect, 2012, 14(1): 17-25. 10.1016/j.micinf.2011.08.019 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.SUZUKI T, TRAPNELL B C. Pulmonary alveolar pro-teinosis syndrome[J]. Clin Chest Med, 2016, 37(3): 431-440. 10.1016/j.ccm.2016.04.006 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.BAKER A D, MALUR A, BARNA B P, et al. Targeted PPARγ deficiency in alveolar macrophages disrupts surfactant catabolism[J]. J Lipid Res, 2010, 51(6): 1325-1331. 10.1194/jlr.m001651 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.GAUTIER E L, CHOW A, SPANBROKE R, et al. Systemic analysis of PPARγ in mouse macrophage populations reveals marked diversity in expression with critical roles in resolution of inflammation and airway immunity[J]. J Immunol, 2012, 189(5): 2614-2624. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.SCHNEIDER C, NOBS S P, KURRER M, et al. Induc-tion of the nuclear receptor PPAR-γ by the cytokine GM-CSF is critical for the differentiation of fetal mono-cytes into alveolar macrophages[J]. Nat Immunol, 2014, 15(11): 1026-1037. 10.1038/ni.3005 [DOI] [PubMed] [Google Scholar]
- 22.LE Y, ZHOU Y, IRIBARREN P, et al. Chemokines and chemokine receptors: their manifold roles in homeo-stasis and disease[J]. Cell Mol Immunol, 2004, 1(2): 95-104. [PubMed] [Google Scholar]
- 23.GARCÍA-SASTRE A, BIRON C A. Type 1 interferons and the virus-host relationship: a lesson in détente [J]. Science, 2006, 312(5775): 879-882. 10.1126/science.1125676 [DOI] [PubMed] [Google Scholar]
- 24.STETSON D B, MEDZHITOV R. T helper 17 cells get the NOD[J]. Immunity, 2007, 27(4): 546-548. 10.1016/j.immuni.2007.10.005 [DOI] [PubMed] [Google Scholar]
- 25.STETSON D B, MEDZHITOV R. Type I interferons in host defense[J]. Immunity, 2006, 25(3): 373-381. [DOI] [PubMed] [Google Scholar]
- 26.HUANG S, ZHU B, CHEON I S, et al. PPAR-γ in macrophages limits pulmonary inflammation and pro-motes host recovery following respiratory viral infection[J/OL]. J Virol, 2019, 93(9): e00030-00019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.KOHLMEIER J E, COOKENHAM T, ROBERTS A D, et al. Type I interferons regulate cytolytic activity of memory CD8(+) T cells in the lung airways during respiratory virus challenge[J]. Immunity, 2010, 33(1): 96-105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.TUMPEY T M, GARCÍA-SASTRE A, TAUBENBERGER J K, et al. Pathogenicity of influenza viruses with genes from the 1918 pandemic virus: functional roles of alveolar macrophages and neutrophils in limiting virus replication and mortality in mice[J]. J Virol, 2005, 79(23): 14933-14944. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.CHENG H, WANG Z, FU L, et al. Macrophage polar-ization in the development and progression of ovarian cancers: an overview[J]. Front Oncol, 2019, 9: 421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.GUILLIAMS M, LAMBRECHT B N, HAMMAD H. Division of labor between lung dendritic cells and macrophages in the defense against pulmonary infections[J]. Mucosal Immunol, 2013, 6(3): 464-473. 10.1038/mi.2013.14 [DOI] [PubMed] [Google Scholar]
- 31.MACEWAN D J. TNF ligands and receptors—a matter of life and death[J]. Br J Pharmacol, 2002, 135(4): 855-875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.NICHOLSON S, BONECINI-ALMEIDA MDA G, LAPA E SILVA J R, et al. Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis[J]. J Exp Med, 1996, 183(5): 2293-2302. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.KEANE J, BALCEWICZ-SABLINSKA M K, REMOLD H G, et al. Infection by mycobacterium tuberculosis promotes human alveolar macrophage apoptosis[J]. Infect Immun, 1997, 65(1): 298-304. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.KEANE J, REMOLD H G, KORNFELD H. Virulent mycobacterium tuberculosis strains evade apoptosis of infected alveolar macrophages[J]. J Immunol, 2000, 164(4): 2016-2020. 10.4049/jimmunol.164.4.2016 [DOI] [PubMed] [Google Scholar]
- 35.HOFFMANN F, ENDER F, SCHMUDDE I, et al. Origin, localization, and immunoregulatory properties of pulmonary phagocytes in allergic asthma[J]. Front Immunol, 2016, 7: 107. 10.3389/fimmu.2016.00107 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.FRICKER M, GIBSON P G. Macrophage dysfunction in the pathogenesis and treatment of asthma[J]. Eur Respir J, 2017, 50(3): 1700196. [DOI] [PubMed] [Google Scholar]
- 37.SIMPSON J L, GIBSON P G, YANG I A, et al. Impaired macrophage phagocytosis in non-eosinophilic asthma[J]. Clin Exp Allergy, 2013, 43(1): 29-35. [DOI] [PubMed] [Google Scholar]
- 38.FERNANDEZ-BOYANAPALLI R, GOLEVA E, KOLAKOWSKI C, et al. Obesity impairs apoptotic cell clearance in asthma[J]. J Allergy Clin Immunol, 2013, 131(4): 1041-1047, 1047. e1-3. 10.1016/j.jaci.2012.09.028 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.HUYNH M L, MALCOLM K C, KOTARU C, et al. Defective apoptotic cell phagocytosis attenuates pro-staglandin E2 and 15-hydroxyeicosatetraenoic acid in severe asthma alveolar macrophages[J]. Am J Respir Crit Care Med, 2005, 172(8): 972-979. [DOI] [PubMed] [Google Scholar]
- 40.HILTY M, BURKE C, PEDRO H, et al. Disordered microbial communities in asthmatic airways[J/OL]. PLoS One, 2010, 5(1): e8578. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.LIANG Z, ZHANG Q, THOMAS C M, et al. Impaired macrophage phagocytosis of bacteria in severe asthma[J]. Respir Res, 2014, 15(1): 72. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.SIMPSON J L, DALY J, BAINES K J, et al. Airway dysbiosis: Haemophilus influenzae and Tropheryma in poorly controlled asthma[J]. Eur Respir J, 2016, 47(3): 792-800. [DOI] [PubMed] [Google Scholar]
- 43.FITZPATRICK A M, TEAGUE W G, BURWELL L, et al. Glutathione oxidation is associated with airway macrophage functional impairment in children with severe asthma[J]. Pediatr Res, 2011, 69(2): 154-159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.CATENA E, MAZZARELLA G, PELUSO G F, et al. Phenotypic features and secretory pattern of alveolar macrophages in atopic asthmatic patients[J]. Monaldi Arch Chest Dis, 1993, 48(1): 6-15. [PubMed] [Google Scholar]
- 45.BAINES K J, SIMPSON J L, WOOD L G, et al. Tran-scriptional phenotypes of asthma defined by gene expression profiling of induced sputum samples[J]. J Allergy Clin Immunol, 2011, 127(1): 153-160, 160. e1-9. 10.1016/j.jaci.2010.10.024 [DOI] [PubMed] [Google Scholar]
- 46.SIMPSON J L, PHIPPS S, BAINES K J, et al. Elevated expression of the NLRP3 inflammasome in neutrophilic asthma[J]. Eur Respir J, 2014, 43(4): 1067-1076. 10.1183/09031936.00105013 [DOI] [PubMed] [Google Scholar]
- 47.TANG C, ROLLAND J M, LI X, et al. Alveolar macro-phages from atopic asthmatics, but not atopic nonasth-matics, enhance interleukin-5 production by CD4+ T cells[J]. Am J Respir Crit Care Med, 1998, 157(4 Pt 1): 1120-1126. [DOI] [PubMed] [Google Scholar]
- 48.ROBINSON D S, TSICOPOULOS A, MENG Q, et al. Increased interleukin-10 messenger RNA expression in atopic allergy and asthma[J]. Am J Respir Cell Mol Biol, 1996, 14(2): 113-117. 10.1165/ajrcmb.14.2.8630259 [DOI] [PubMed] [Google Scholar]
- 49.GINHOUX F, GRETER M, LEBOEUF M, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages[J]. Science, 2010, 330(6005): 841-845. 10.1126/science.1194637 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.GIBBINGS S L, THOMAS S M, ATIF S M, et al. Three unique interstitial macrophages in the murine lung at steady state[J]. Am J Respir Cell Mol Biol, 2017, 57(1): 66-76. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.KOCH C M, CHIU S F, MISHARIN A V, et al. Lung interstitial macrophages: establishing identity and uncov-ering heterogeneity[J]. Am J Respir Cell Mol Biol, 2017, 57(1): 7-9. [DOI] [PubMed] [Google Scholar]
- 52.LIEGEOIS M, LEGRAND C, DESMET C J, et al. The interstitial macrophage: a long-neglected piece in the puzzle of lung immunity[J]. Cell Immunol, 2018, 330: 91-96. 10.1016/j.cellimm.2018.02.001 [DOI] [PubMed] [Google Scholar]
- 53.SABATEL C, RADERMECKER C, FIEVEZ L, et al. Exposure to bacterial CpG DNA protects from airway allergic inflammation by expanding regulatory lung interstitial macrophages[J]. Immunity, 2017, 46(3): 457-473. [DOI] [PubMed] [Google Scholar]
- 54.SCHUIJS M J, WILLART M A, VERGOTE K, et al. Farm dust and endotoxin protect against allergy through A20 induction in lung epithelial cells[J]. Science, 2015, 349(6252): 1106-1110. [DOI] [PubMed] [Google Scholar]
- 55.SUR S, WILD J S, CHOUDHURY B K, et al. Long term prevention of allergic lung inflammation in a mouse model of asthma by CpG oligodeoxynucleotides[J]. J Immunol, 1999, 162(10): 6284-6293. [PubMed] [Google Scholar]
- 56.BEDORET D, WALLEMACQ H, MARICHAL T, et al. Lung interstitial macrophages alter dendritic cell func-tions to prevent airway allergy in mice[J]. J Clin Invest, 2009, 119(12): 3723-3738. 10.1172/jci39717 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.TOUSSAINT M, FIEVEZ L, DRION P V, et al. Myeloid hypoxia-inducible factor 1α prevents airway allergy in mice through macrophage-mediated immunoregulation[J]. Mucosal Immunol, 2013, 6(3): 485-497. 10.1038/mi.2012.88 [DOI] [PubMed] [Google Scholar]
- 58.FRANKE-ULLMANN G, PFÖRTNER C, WALTER P, et al. Characterization of murine lung interstitial macro-phages in comparison with alveolar macrophages in vitro [J]. J Immunol, 1996, 157(7): 3097-3104. [PubMed] [Google Scholar]
- 59.BYRNE A J, MAHER T M, LLOYD C M. Pulmonary macrophages: a new therapeutic pathway in fibrosing lung disease?[J]. Trends Mol Med, 2016, 22(4): 303-316. 10.1016/j.molmed.2016.02.004 [DOI] [PubMed] [Google Scholar]
- 60.WANG M, FIJAK M, HOSSAIN H, et al. Characteri-zation of the micro-environment of the testis that shapes the phenotype and function of testicular macrophages[J]. J Immunol, 2017, 198(11): 4327-4340. [DOI] [PubMed] [Google Scholar]
- 61.CAO Z, LIS R, GINSBERG M, et al. Targeting of the pulmonary capillary vascular niche promotes lung alveolar repair and ameliorates fibrosis[J]. Nat Med, 2016, 22(2): 154-162. 10.1038/nm.4035 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.HU B, PHAN S H. Notch in fibrosis and as a target of anti-fibrotic therapy[J]. Pharmacol Res, 2016, 108: 57-64. 10.1016/j.phrs.2016.04.010 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63.VENNERI M A, DE PALMA M, PONZONI M, et al. Identification of proangiogenic TIE2-expressing mono-cytes (TEMs) in human peripheral blood and cancer[J]. Blood, 2007, 109(12): 5276-5285. [DOI] [PubMed] [Google Scholar]
- 64.MURDOCH C, TAZZYMAN S, WEBSTER S, et al. Expression of Tie-2 by human monocytes and their responses to angiopoietin-2[J]. J Immunol, 2007, 178(11): 7405-7411. 10.4049/jimmunol.178.11.7405 [DOI] [PubMed] [Google Scholar]
- 65.COFFELT S B, TAL A O, SCHOLZ A, et al. Angiopoietin-2 regulates gene expression in TIE2-expressing monocytes and augments their inherent proangiogenic functions[J]. Cancer Res, 2010, 70(13): 5270-5280. 10.1158/0008-5472.can-10-0012 [DOI] [PubMed] [Google Scholar]
- 66.GUILLIAMS M, GINHOUX F, JAKUBZICK C, et al. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny[J]. Nat Rev Immunol, 2014, 14(8): 571-578. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.JOHNSTON L K, RIMS C R, GILL S E, et al. Pulmo-nary macrophage subpopulations in the induction and resolution of acute lung injury[J]. Am J Respir Cell Mol Biol, 2012, 47(4): 417-426. 10.1165/rcmb.2012-0090oc [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.KOLTER J, KIERDORF K, HENNEKE P. Origin and differentiation of nerve-associated macrophages[J]. J Immunol, 2020, 204(2): 271-279. [DOI] [PubMed] [Google Scholar]
- 69.NOY R, POLLARD J W. Tumor-associated macrophages: from mechanisms to therapy[J]. Immunity, 2014, 41(1): 49-61. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.COUSSENS L M, ZITVOGEL L, PALUCKA A K. Neu-tralizing tumor-promoting chronic inflammation: a magic bullet?[J]. Science, 2013, 339(6117): 286-291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.QIAN B Z, POLLARD J W. Macrophage diversity enhances tumor progression and metastasis[J]. Cell, 2010, 141(1): 39-51. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.BONAVENTURA A, VECCHIÉ A, WANG T S, et al. Targeting GM-CSF in COVID-19 pneumonia: rationale and strategies[J]. Front Immunol, 2020, 11: 1625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.WYCKOFF J B, WANG Y, LIN E Y, et al. Direct visualization of macrophage-assisted tumor cell intrav-asation in mammary tumors[J]. Cancer Res, 2007, 67(6): 2649-2656. [DOI] [PubMed] [Google Scholar]
- 74.BALTAZAR-GARCÍA E A, VARGAS-GUERRERO B, GASCA-LOZANO L E, et al. Molecular changes underlying pulmonary emphysema and chronic bronchitis in chronic obstructive pulmonary disease: an updated review[J]. Histol Histopathol, 2024, 39(7): 805-816. [DOI] [PubMed] [Google Scholar]
- 75.AKATA K, VAN EEDEN S F. Lung macrophage func-tional properties in chronic obstructive pulmonary disease[J]. Int J Mol Sci, 2020, 21(3): 853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76.LANGER C, SORIA J C. The role of anti-epidermal growth factor receptor and anti-vascular endothelial growth factor therapies in the treatment of non-small-cell lung cancer[J]. Clin Lung Cancer, 2010, 11(2): 82-90. 10.3816/clc.2010.n.011 [DOI] [PubMed] [Google Scholar]
- 77.CASSETTA L, POLLARD J W. Targeting macrophages: therapeutic approaches in cancer[J]. Nat Rev Drug Discov, 2018, 17(12): 887-904. [DOI] [PubMed] [Google Scholar]

