Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1985 Nov 15;232(1):49–53. doi: 10.1042/bj2320049

Time-dependence of biological activity induced by covalent insulin-receptor complexes in rat adipocytes.

A Schüttler, C Diaconescu, D J Saunders, D Brandenburg
PMCID: PMC1152837  PMID: 3910030

Abstract

Lipogenesis in isolated adipocyte preparations is stimulated when photosensitive insulin derivatives are attached covalently to specific receptors. This response was compared quantitatively with that to reversibly associated insulin, and it was shown that both covalent and reversible insulin-receptor complexes behave very similarly. The extent of stimulation of lipogenesis was studied as a function of time. Cells were incubated in buffer for various times before addition to vials containing 0 (basal) or 10 ng of monocomponent insulin/ml (maximal) and [U-3H]glucose. After 60 min, the toluene-soluble [3H]lipids were measured. The maximal stimulation induced by reversibly bound insulin was virtually constant over a period of 4 h. In contrast, adipocytes to which N alpha B2-(2-nitro-4-azidophenylacetyl)-des-PheB1-insulin had been covalently attached at the start of the experiment showed a loss of stimulation with time when incubated at 37 degrees C. This loss was decreased in the presence of lysosomotropic agents such as chloroquine at concentrations (approx. 200 microM) that had very little or no effect on the basal and maximal lipogenesis rates. A simple method was used to transform the measured rate of loss of stimulation into a rate of loss of effective units. A half-time of 80 min was calculated for the effective covalent insulin-receptor units in adipocytes at 37 degrees C at pH 7.4. This is very close to values reported by others for the internalization of covalent complexes in these cells, suggesting that this may be the causative event for the deactivation of the insulin-receptor unit. The inhibitory effect of chloroquine on the deactivation may indicate that the insulin-receptor complex can function even after internalization.

Full text

PDF
49

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berhanu P., Olefsky J. M., Tsai P., Thamm P., Saunders D., Brandenburg D. Internalization and molecular processing of insulin receptors in isolated rat adipocytes. Proc Natl Acad Sci U S A. 1982 Jul;79(13):4069–4073. doi: 10.1073/pnas.79.13.4069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brandenburg D., Diaconescu C., Saunders D., Thamm P. Covalent linking of photoreactive insulin to adipocytes produces a prolonged signal. Nature. 1980 Aug 21;286(5775):821–822. doi: 10.1038/286821a0. [DOI] [PubMed] [Google Scholar]
  3. Goldfine I. D. Does insulin need a second messenger? Diabetes. 1977 Feb;26(2):148–155. doi: 10.2337/diab.26.2.148. [DOI] [PubMed] [Google Scholar]
  4. Gorden P., Carpentier J. L., Freychet P. O., Orci L. Internalization of polypeptide hormones: mechanism, intracellular localization and significance. Diabetologia. 1980 Apr;18(4):263–274. doi: 10.1007/BF00251003. [DOI] [PubMed] [Google Scholar]
  5. Heidenreich K. A., Berhanu P., Brandenburg D., Olefsky J. M. Degradation of insulin receptors in rat adipocytes. Diabetes. 1983 Nov;32(11):1001–1009. doi: 10.2337/diab.32.11.1001. [DOI] [PubMed] [Google Scholar]
  6. Jacobs S., Hazum E., Shechter Y., Cuatrecasas P. Insulin receptor: covalent labeling and identification of subunits. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4918–4921. doi: 10.1073/pnas.76.10.4918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Klotz G., Saunders D., Brandenburg D. Biological potency of covalently linked insulin-receptor in rat adipocytes. Comparison with the potency of reversible complexes. Biochim Biophys Acta. 1984 Feb 17;803(1-2):78–84. doi: 10.1016/0167-4889(84)90057-0. [DOI] [PubMed] [Google Scholar]
  8. Marshall S., Olefsky J. M. Characterization of insulin-induced receptor loss and evidence for internalization of the insulin receptor. Diabetes. 1981 Sep;30(9):746–753. doi: 10.2337/diab.30.9.746. [DOI] [PubMed] [Google Scholar]
  9. Marshall S., Olefsky J. M. Tris (hydroxmethyl) aminomethane permits the expression of insulin-induced receptor loss in isolated rat adipocytes. Biochem Biophys Res Commun. 1981 Sep 30;102(2):646–653. doi: 10.1016/s0006-291x(81)80181-7. [DOI] [PubMed] [Google Scholar]
  10. Moody A. J., Stan M. A., Stan M., Gliemann J. A simple free fat cell bioassay for insulin. Horm Metab Res. 1974 Jan;6(1):12–16. doi: 10.1055/s-0028-1093895. [DOI] [PubMed] [Google Scholar]
  11. Olefsky J. M., Marshall S., Berhanu P., Saekow M., Heidenreich K., Green A. Internalization and intracellular processing of insulin and insulin receptors in adipocytes. Metabolism. 1982 Jul;31(7):670–690. doi: 10.1016/0026-0495(82)90197-4. [DOI] [PubMed] [Google Scholar]
  12. RODBELL M. METABOLISM OF ISOLATED FAT CELLS. I. EFFECTS OF HORMONES ON GLUCOSE METABOLISM AND LIPOLYSIS. J Biol Chem. 1964 Feb;239:375–380. [PubMed] [Google Scholar]
  13. Ronnett G. V., Knutson V. P., Lane M. D. Insulin-induced down-regulation of insulin receptors in 3T3-L1 adipocytes. Altered rate of receptor inactivation. J Biol Chem. 1982 Apr 25;257(8):4285–4291. [PubMed] [Google Scholar]
  14. Saunders D., Klotz G., Brandenburg D. Biological activity of covalently-linked insulin-receptor complexes in rat adipocytes. Effect of pH. Biochim Biophys Acta. 1984 Feb 17;803(1-2):85–89. doi: 10.1016/0167-4889(84)90058-2. [DOI] [PubMed] [Google Scholar]
  15. Silverstein S. C., Steinman R. M., Cohn Z. A. Endocytosis. Annu Rev Biochem. 1977;46:669–722. doi: 10.1146/annurev.bi.46.070177.003321. [DOI] [PubMed] [Google Scholar]
  16. Wang C. C., Hedo J. A., Kahn C. R., Saunders D. T., Thamm P., Brandenburg D. Photoreactive insulin derivatives. Comparison of biologic activity and labeling properties of three analogues in isolated rat adipocytes. Diabetes. 1982 Dec;31(12):1068–1076. doi: 10.2337/diacare.31.12.1068. [DOI] [PubMed] [Google Scholar]
  17. Wang C. C., Sonne O., Hedo J. A., Cushman S. W., Simpson I. A. Insulin-induced internalization of the insulin receptor in the isolated rat adipose cell. Detection of the internalized 138-kilodalton receptor subunit using a photoaffinity 125I-insulin. J Biol Chem. 1983 Apr 25;258(8):5129–5134. [PubMed] [Google Scholar]
  18. Whitesell R. R., Gliemann J. Kinetic parameters of transport of 3-O-methylglucose and glucose in adipocytes. J Biol Chem. 1979 Jun 25;254(12):5276–5283. [PubMed] [Google Scholar]
  19. Wisher M. H., Baron M. D., Jones R. H., Sönksen P. H. Photoreactive insulin analogues used to characterise the insulin receptor. Biochem Biophys Res Commun. 1980 Jan 29;92(2):492–498. doi: 10.1016/0006-291x(80)90360-5. [DOI] [PubMed] [Google Scholar]
  20. Yip C. C., Yeung C. W., Moule M. L. Photoaffinity labeling of insulin receptor of rat adiopocyte plasma membrane. J Biol Chem. 1978 Mar 25;253(6):1743–1745. [PubMed] [Google Scholar]
  21. Yip C. C., Yeung C. W., Moule M. L. Photoaffinity labeling of insulin receptor proteins of liver plasma membrane preparations. Biochemistry. 1980 Jan 8;19(1):70–76. doi: 10.1021/bi00542a011. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES