Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1985 Nov 15;232(1):245–254. doi: 10.1042/bj2320245

Insulin stimulation of glucose transport in isolated rat adipocytes. Functional evidence for insulin activation of intrinsic transporter activity within the plasma membrane.

P A Hyslop, C E Kuhn, R D Sauerheber
PMCID: PMC1152865  PMID: 3910027

Abstract

We examined the effects of the membrane-impermeant amino-group-modifying agent fluorescein isothiocyanate (FITC) on the basal and insulin-stimulated hexose-transport activity of isolated rat adipocytes. Pre-treatment of cells with FITC causes irreversible inhibition of transport measured in subsequently washed cells. Transport activity was inhibited by approx. 50% with 2 mM-FITC in 8 min. The cells respond to insulin, after FITC treatment and removal, and the fold increase in transport above the basal value caused by maximal concentrations of insulin was independent of the concentration of FITC used for pre-treatment over the range 0-2 mM, where basal activity was progressively inhibited. The ability of FITC to modify selectively hexose transporters accessible only to the external milieu was evaluated by two methods. (1) Free intracellular FITC, and the distribution of FITC bound to cellular components, were assessed after dialysis of the homogenate and subcellular fractionation on sucrose gradients by direct spectroscopic measurement of fluorescein. Most (98%) of the FITC was associated with the non-diffusible fractions. Equilibrium sucrose-density-gradient centrifugation of the homogenate demonstrated that the subcellular distribution of the bound FITC correlated with the density distribution of a plasma-membrane marker, but not markers for Golgi, endoplasmic reticulum, mitochondria or protein. Exposing the cellular homogenate, rather than the intact cell preparation, to 2 mM-FITC resulted in a 4-5-fold increase in total bound FITC, and the density-distribution profile more closely resembled the distribution of total protein. (2) Incubation of hexokinase preparations with FITC rapidly and irreversibly inactivates this protein. However, both intracellular hexokinase total activity and its apparent Michaelis constant for glucose were unaffected in FITC-treated intact cells. Further control experiments demonstrated that FITC pre-treatment of cells had no effect on the intracellular ATP concentration or the dose-response curve of insulin stimulation of hexose transport. Since the fold increase of hexose transport induced by insulin is constant over the range of inhibition of surface-labelled hexose transporters, we suggest that insulin-induced insertion of additional transporters into the plasma membrane may not be the major locus of acceleration of hexose transport by the hormone.

Full text

PDF
245

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baxter A., Durham J. P. A rapid, sensitive disk assay for the determination of glycoprotein glycosyltransferases. Anal Biochem. 1979 Sep 15;98(1):95–101. doi: 10.1016/0003-2697(79)90711-5. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Carter-Su C., Czech M. P. Reconstitution of D-glucose transport activity from cytoplasmic membranes. Evidence against recruitment of cytoplasmic membrane transporters into the plasma membrane as the sole action of insulin. J Biol Chem. 1980 Nov 10;255(21):10382–10386. [PubMed] [Google Scholar]
  4. Chandramouli V., Milligan M., Carter J. R., Jr Insulin stimulation of glucose transport in adipose cells. An energy-dependent process. Biochemistry. 1977 Mar 22;16(6):1151–1158. doi: 10.1021/bi00625a019. [DOI] [PubMed] [Google Scholar]
  5. Ciaraldi T. P., Olefsky J. M. Effect of temperature on coupling of insulin receptors to stimulation of glucose transport in isolated rat adipocytes. Metabolism. 1983 Oct;32(10):1002–1008. doi: 10.1016/0026-0495(83)90143-9. [DOI] [PubMed] [Google Scholar]
  6. Cuatrecasas P. Interaction of wheat germ agglutinin and concanavalin A with isolated fat cells. Biochemistry. 1973 Mar 27;12(7):1312–1323. doi: 10.1021/bi00731a011. [DOI] [PubMed] [Google Scholar]
  7. Cushman S. W., Wardzala L. J. Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane. J Biol Chem. 1980 May 25;255(10):4758–4762. [PubMed] [Google Scholar]
  8. Czech M. P. Insulin action and the regulation of hexose transport. Diabetes. 1980 May;29(5):399–409. doi: 10.2337/diab.29.5.399. [DOI] [PubMed] [Google Scholar]
  9. Denton R. M., Brownsey R. W., Belsham G. J. A partial view of the mechanism of insulin action. Diabetologia. 1981 Oct;21(4):347–362. doi: 10.1007/BF00252681. [DOI] [PubMed] [Google Scholar]
  10. Edidin M., Zagyansky Y., Lardner T. J. Measurement of membrane protein lateral diffusion in single cells. Science. 1976 Feb 6;191(4226):466–468. doi: 10.1126/science.1246629. [DOI] [PubMed] [Google Scholar]
  11. Ezaki O., Kono T. Effects of temperature on basal and insulin-stimulated glucose transport activities in fat cells. Further support for the translocation hypothesis of insulin action. J Biol Chem. 1982 Dec 10;257(23):14306–14310. [PubMed] [Google Scholar]
  12. Fain J. N. Insulin secretion and action. Metabolism. 1984 Jul;33(7):672–679. doi: 10.1016/0026-0495(84)90069-6. [DOI] [PubMed] [Google Scholar]
  13. Gliemann J., Osterlind K., Vinten J., Gammeltoft S. A procedure for measurement of distribution spaces in isolated fat cells. Biochim Biophys Acta. 1972 Nov 24;286(1):1–9. doi: 10.1016/0304-4165(72)90082-7. [DOI] [PubMed] [Google Scholar]
  14. Goshima K., Masuda A., Owaribe K. Insulin-induced formation of ruffling membranes of KB cells and its correlation with enhancement of amino acid transport. J Cell Biol. 1984 Mar;98(3):801–809. doi: 10.1083/jcb.98.3.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hilf R., Sorge L. K., Gay R. J. Insulin binding and glucose transport. Int Rev Cytol. 1981;72:147–202. doi: 10.1016/s0074-7696(08)61196-1. [DOI] [PubMed] [Google Scholar]
  16. Houslay M. D. Membrane phosphorylation: a crucial role in the action of insulin, EGF, and pp60src? Biosci Rep. 1981 Jan;1(1):19–34. doi: 10.1007/BF01115146. [DOI] [PubMed] [Google Scholar]
  17. Hutchinson B. T., Hyslop P. A., Kuhn C. E., Sauerheber R. D. Sensitivity of adipocyte basal and insulin-stimulated hexose transport to the membrane lipid structure. Biochem Pharmacol. 1985 Apr 1;34(7):1079–1086. doi: 10.1016/0006-2952(85)90612-4. [DOI] [PubMed] [Google Scholar]
  18. Hyslop P. A., Kuhn C. E., Sauerheber R. D. Temperature optimum of insulin-stimulated 2-deoxy-D-glucose uptake in rat adipocytes. Correlation of cellular transport with membrane spin-label and fluorescence-label data. Biochem J. 1984 Feb 15;218(1):29–36. doi: 10.1042/bj2180029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hyslop P. A., York D. A., Sauerheber R. D. Effects of insulin on the lipid structure of liver plasma membrane measured with fluorescence and ESR spectroscopic methods. Biochim Biophys Acta. 1984 Oct 3;776(2):267–278. doi: 10.1016/0005-2736(84)90216-5. [DOI] [PubMed] [Google Scholar]
  20. Jarett L., Smith R. M. Effect of cytochalasin B and D on groups of insulin receptors and on insulin action in rat adipocytes. Possible evidence for a structural relationship of the insulin receptor to the glucose transport system. J Clin Invest. 1979 Apr;63(4):571–579. doi: 10.1172/JCI109338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jesaitis A. J., Naemura J. R., Painter R. G., Sklar L. A., Cochrane C. G. The fate of an N-formylated chemotactic peptide in stimulated human granulocytes. Subcellular fractionation studies. J Biol Chem. 1983 Feb 10;258(3):1968–1977. [PubMed] [Google Scholar]
  22. Karnieli E., Zarnowski M. J., Hissin P. J., Simpson I. A., Salans L. B., Cushman S. W. Insulin-stimulated translocation of glucose transport systems in the isolated rat adipose cell. Time course, reversal, insulin concentration dependency, and relationship to glucose transport activity. J Biol Chem. 1981 May 25;256(10):4772–4777. [PubMed] [Google Scholar]
  23. Kono T., Robinson F. W., Sarver J. A., Vega F. V., Pointer R. H. Actions of insulin in fat cells. Effects of low temperature, uncouplers of oxidative phosphorylation, and respiratory inhibitors. J Biol Chem. 1977 Apr 10;252(7):2226–2233. [PubMed] [Google Scholar]
  24. Levine R. Insulin: the effects and mode of action of the hormone. Vitam Horm. 1982;39:145–173. doi: 10.1016/s0083-6729(08)61136-x. [DOI] [PubMed] [Google Scholar]
  25. Luly P., Shinitzky M. Gross structural changes in isolated liver cell plasma membranes upon binding of insulin. Biochemistry. 1979 Feb 6;18(3):445–450. doi: 10.1021/bi00570a009. [DOI] [PubMed] [Google Scholar]
  26. May J. M. The inhibition of hexose transport by permeant and impermeant sulfhydryl agents in rat adipocytes. J Biol Chem. 1985 Jan 10;260(1):462–467. [PubMed] [Google Scholar]
  27. Melnick R. L., Rubenstein C. P., Motzkin S. M. Measurement of mitochondrial oxidative phosphorylation: selective inhibition of adenylate kinase activity by P1,P5-di-(adenosine-5')-pentaphosphate. Anal Biochem. 1979 Jul 1;96(1):7–11. doi: 10.1016/0003-2697(79)90546-3. [DOI] [PubMed] [Google Scholar]
  28. Oka Y., Czech M. P. Photoaffinity labeling of insulin-sensitive hexose transporters in intact rat adipocytes. Direct evidence that latent transporters become exposed to the extracellular space in response to insulin. J Biol Chem. 1984 Jul 10;259(13):8125–8133. [PubMed] [Google Scholar]
  29. Olefsky J. M. Mechanisms of the ability of insulin to activate the glucose-transport system in rat adipocytes. Biochem J. 1978 Apr 15;172(1):137–145. doi: 10.1042/bj1720137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. PHILLIPS A. H., LANGDON R. G. Hepatic triphosphopyridine nucleotide-cytochrome c reductase: isolation, characterization, and kinetic studies. J Biol Chem. 1962 Aug;237:2652–2660. [PubMed] [Google Scholar]
  31. Pabst R., Kaatz M., Westermann J. In situ labelling of bone marrow lymphocytes with fluorescein isothiocyanate for lymphocyte migration studies in pigs. Scand J Haematol. 1983 Sep;31(3):267–274. doi: 10.1111/j.1600-0609.1983.tb00651.x. [DOI] [PubMed] [Google Scholar]
  32. Peerce B. E., Wright E. M. Conformational changes in the intestinal brush border sodium-glucose cotransporter labeled with fluorescein isothiocyanate. Proc Natl Acad Sci U S A. 1984 Apr;81(7):2223–2226. doi: 10.1073/pnas.81.7.2223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Peters R., Peters J., Tews K. H., Bähr W. A microfluorimetric study of translational diffusion in erythrocyte membranes. Biochim Biophys Acta. 1974 Nov 15;367(3):282–294. doi: 10.1016/0005-2736(74)90085-6. [DOI] [PubMed] [Google Scholar]
  34. Piwnica-Worms D., Jacob R., Horres C. R., Lieberman M. Na/H exchange in cultured chick heart cells. pHi regulation. J Gen Physiol. 1985 Jan;85(1):43–64. doi: 10.1085/jgp.85.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sauerheber R. D., Esgate J. A., Kuhn C. E. Alcohols inhibit adipocyte basal and insulin-stimulated glucose uptake and increase the membrane lipid fluidity. Biochim Biophys Acta. 1982 Sep 24;691(1):115–124. doi: 10.1016/0005-2736(82)90220-6. [DOI] [PubMed] [Google Scholar]
  36. Sauerheber R. D., Kuhn C. E., Hyslop P. A. Membrane structural/functional properties of adipocytes from normal and streptozotocin-diabetic rats. Diabetes. 1984 Mar;33(3):258–265. doi: 10.2337/diab.33.3.258. [DOI] [PubMed] [Google Scholar]
  37. Schoenle E. J., Adams L. D., Sammons D. W. Insulin-induced rapid decrease of a major protein in fat cell plasma membranes. J Biol Chem. 1984 Oct 10;259(19):12112–12116. [PubMed] [Google Scholar]
  38. Simpson I. A., Yver D. R., Hissin P. J., Wardzala L. J., Karnieli E., Salans L. B., Cushman S. W. Insulin-stimulated translocation of glucose transporters in the isolated rat adipose cells: characterization of subcellular fractions. Biochim Biophys Acta. 1983 Dec 19;763(4):393–407. doi: 10.1016/0167-4889(83)90101-5. [DOI] [PubMed] [Google Scholar]
  39. Stanley P. E., Williams S. G. Use of the liquid scintillation spectrometer for determining adenosine triphosphate by the luciferase enzyme. Anal Biochem. 1969 Jun;29(3):381–392. doi: 10.1016/0003-2697(69)90323-6. [DOI] [PubMed] [Google Scholar]
  40. Suzuki K., Kono T. Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site. Proc Natl Acad Sci U S A. 1980 May;77(5):2542–2545. doi: 10.1073/pnas.77.5.2542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. WALAAS E., WALAAS O. Effect of insulin on rat diaphragm under anaerobic conditions. J Biol Chem. 1952 Mar;195(1):367–373. [PubMed] [Google Scholar]
  42. WICK A. N., DRURY D. R., NAKADA H. I., WOLFE J. B. Localization of the primary metabolic block produced by 2-deoxyglucose. J Biol Chem. 1957 Feb;224(2):963–969. [PubMed] [Google Scholar]
  43. Wardzala L. J., Jeanrenaud B. Identification of the D-glucose-inhibitable cytochalasin B binding site as the glucose transporter in rat diaphragm plasma and microsomal membranes. Biochim Biophys Acta. 1983 Apr 21;730(1):49–56. doi: 10.1016/0005-2736(83)90315-2. [DOI] [PubMed] [Google Scholar]
  44. Weber J., Semenza G. Chemical modification of the small intestinal Na+/D-glucose cotransporter by amino group reagents. Evidence for a role of amino group(s) in the binding of the sugar. Biochim Biophys Acta. 1983 Jun 23;731(3):437–447. doi: 10.1016/0005-2736(83)90039-1. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES