Abstract
N-Acetyl-L-glutamate synthetase (EC 2.3.1.1) catalyses the synthesis of N-acetyl-L-glutamate, an allosteric activator of carbamoyl-phosphate synthetase I in the liver of ureotelic animals, and the first enzyme is activated specifically by arginine. We have proposed that arginine can stimulate acetylglutamine synthetase in vivo and thereby increase the mitochondrial content of acetylglutamate. The effects of arginine on acetylglutamate synthesis in isolated mitochondria were investigated in detail in the present work. When rat liver mitochondria were isolated and incubated with [14C]glutamate and unlabelled acetate as substrates, acetyl[14C]glutamate synthesis in the mitochondria was more extensive in the presence than in the absence of L-arginine. There was no significant difference between the specific radioactivities of intramitochondrial [14C]glutamate in the presence and absence of arginine. When rat liver mitochondria were incubated with [14C]acetate and unlabelled glutamate as substrates, arginine also stimulated acetyl[14C]glutamate synthesis in the isolated mitochondria. L-Lysine or L-homoarginine, which does not activate acetylglutamate synthetase, had no effect on acetylglutamate synthesis, in the isolated mitochondria. The arginine concentration giving half-maximal synthesis of acetylglutamate in isolated mitochondria was about 50 microM, which is in the range of physiological concentrations of arginine in the liver. As we previously reported [Kawamoto, Ishida, Mori & Tatibana (1982) Eur. J. Biochem. 123, 637-641], the sensitivity of acetylglutamate synthetase to arginine activation undergoes marked changes after food ingestion. The extent of arginine activation of acetylglutamate synthesis in isolated mitochondria correlated well with the sensitivity of acetylglutamate synthetase extracted from the mitochondria to arginine activation. These data lend further support to the idea that arginine itself activates the mitochondrial synthesis of acetylglutamate.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cheung C. W., Raijman L. Arginine, mitochondrial arginase, and the control of carbamyl phosphate synthesis. Arch Biochem Biophys. 1981 Jul;209(2):643–649. doi: 10.1016/0003-9861(81)90324-6. [DOI] [PubMed] [Google Scholar]
- Cheung C. W., Raijman L. The regulation of carbamyl phosphate synthetase (ammonia) in rat liver mitochondria. Effects of acetylglutamate concentration and ATP translocation. J Biol Chem. 1980 Jun 10;255(11):5051–5057. [PubMed] [Google Scholar]
- Clarke S. A major polypeptide component of rat liver mitochondria: carbamyl phosphate synthetase. J Biol Chem. 1976 Feb 25;251(4):950–961. [PubMed] [Google Scholar]
- Cohen N. S. N-acetylglutamate-independent activity of carbamyl phosphate synthetase (ammonia): implications for the kinetic assay of acetylglutamate. Arch Biochem Biophys. 1984 Jul;232(1):38–46. doi: 10.1016/0003-9861(84)90519-8. [DOI] [PubMed] [Google Scholar]
- Freedland R. A., Crozier G. L., Hicks B. L., Meijer A. J. Arginine uptake by isolated rat liver mitochondria. Biochim Biophys Acta. 1984 Dec 20;802(3):407–412. doi: 10.1016/0304-4165(84)90357-x. [DOI] [PubMed] [Google Scholar]
- GRISOLIA S., COHEN P. P. Catalytic rôle of of glutamate derivatives in citrulline biosynthesis. J Biol Chem. 1953 Oct;204(2):753–757. [PubMed] [Google Scholar]
- Gamble J. G., Lehninger A. L. Transport of ornithine and citrulline across the mitochondrial membrane. J Biol Chem. 1973 Jan 25;248(2):610–618. [PubMed] [Google Scholar]
- HALL L. M., METZENBERG R. L., COHEN P. P. Isolation and characterization of a naturally occurring cofactor of carbamyl phosphate biosynthesis. J Biol Chem. 1958 Feb;230(2):1013–1021. [PubMed] [Google Scholar]
- Hensgens H. E., Verhoeven A. J., Meijer A. J. The relationship between intramitochondrial N-acetylglutamate and activity of carbamoyl-phosphate synthetase (ammonia). The effect of glucagon. Eur J Biochem. 1980;107(1):197–205. doi: 10.1111/j.1432-1033.1980.tb04640.x. [DOI] [PubMed] [Google Scholar]
- Kawamoto S., Ishida H., Mori M., Tatibana M. Regulation of N-acetylglutamate synthetase in mouse liver. Postprandial changes in sensitivity to activation by arginine. Eur J Biochem. 1982 Apr;123(3):637–641. [PubMed] [Google Scholar]
- Kawamoto S., Tatibana M. Arginine activation of N-acetylglutamate synthetase in mouse liver. Enhancement of the sensitivity in vivo by parenteral treatment with inhibitors of nucleic acid and protein synthesis. FEBS Lett. 1983 Jan 10;151(1):117–121. doi: 10.1016/0014-5793(83)80355-x. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lof C., Cohen M., Vermeulen L. P., van Roermund C. W., Wanders R. J., Meijer A. J. Properties of carbamoyl-phosphate synthetase (ammonia) in rat-liver mitochondria made permeable with toluene. Eur J Biochem. 1983 Sep 15;135(2):251–258. doi: 10.1111/j.1432-1033.1983.tb07645.x. [DOI] [PubMed] [Google Scholar]
- MYERS D. K., SLATER E. C. The enzymic hydrolysis of adenosine triphosphate by liver mitochondria. I. Activities at different pH values. Biochem J. 1957 Dec;67(4):558–572. doi: 10.1042/bj0670558. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGivan J. D., Bradford N. M., Mendes-Mourão J. The regulation of carbamoyl phosphate synthase activity in rat liver mitochondria. Biochem J. 1976 Feb 15;154(2):415–421. doi: 10.1042/bj1540415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meijer A. J., van Woerkom G. M. Control of the rate of citrulline synthesis by short-term changes in N-acetylglutamate levels in isolated rat-liver mitochondria. FEBS Lett. 1978 Feb 1;86(1):117–121. doi: 10.1016/0014-5793(78)80111-2. [DOI] [PubMed] [Google Scholar]
- Morita T., Mori M., Tatibana M. Regulation of N-acetyl-L-glutamate degradation in mammalian liver. J Biochem. 1982 Feb;91(2):563–569. doi: 10.1093/oxfordjournals.jbchem.a133728. [DOI] [PubMed] [Google Scholar]
- Rubio V., Britton H. G., Grisolia S. Mitochondrial carbamoyl phosphate synthetase activity in the absence of N-acetyl-L-glutamate. Mechanism of activation by this cofactor. Eur J Biochem. 1983 Aug 1;134(2):337–343. doi: 10.1111/j.1432-1033.1983.tb07572.x. [DOI] [PubMed] [Google Scholar]
- Saheki T., Katsunuma T., Sase M. Regulation of urea synthesis in rat liver. Changes of ornithine and acetylglutamate concentrations in the livers of rats subjected to dietary transitions. J Biochem. 1977 Aug;82(2):551–558. [PubMed] [Google Scholar]
- Shigesada K., Aoyagi K., Tatibana M. Role of acetylglutamate in ureotelism. Variations in acetylglutamate level and its possible significance in control of urea synthesis in mammalian liver. Eur J Biochem. 1978 Apr 17;85(2):385–391. doi: 10.1111/j.1432-1033.1978.tb12250.x. [DOI] [PubMed] [Google Scholar]
- Shigesada K., Tatibana M. Enzymatic synthesis of acetylglutamate by mammalian liver preparations and its stimulation by arginine. Biochem Biophys Res Commun. 1971 Sep;44(5):1117–1124. doi: 10.1016/s0006-291x(71)80201-2. [DOI] [PubMed] [Google Scholar]
- Shigesada K., Tatibana M. N-Acetylglutamate synthetase from rat-liver mitochondria. Partial purification and catalytic properties. Eur J Biochem. 1978 Mar;84(1):285–291. doi: 10.1111/j.1432-1033.1978.tb12167.x. [DOI] [PubMed] [Google Scholar]
- Shigesada K., Tatibana M. Role of acetylglutamate in ureotelism. I. Occurrence and biosynthesis of acetylglutamate in mouse and rat tissues. J Biol Chem. 1971 Sep 25;246(18):5588–5595. [PubMed] [Google Scholar]
- Sonoda T., Tatibana M. Purification of N-acetyl-L-glutamate synthetase from rat liver mitochondria and substrate and activator specificity of the enzyme. J Biol Chem. 1983 Aug 25;258(16):9839–9844. [PubMed] [Google Scholar]
- Stewart P. M., Walser M. Short term regulation of ureagenesis. J Biol Chem. 1980 Jun 10;255(11):5270–5280. [PubMed] [Google Scholar]
- Wanders R. J., Meijer A. J., Groen A. K., Tager J. M. Bicarbonate and the pathway of glutamate oxidation in isolated rat-liver mitochondria. Eur J Biochem. 1983 Jun 1;133(1):245–254. doi: 10.1111/j.1432-1033.1983.tb07455.x. [DOI] [PubMed] [Google Scholar]
- Williamson J. R., Hoek J. B., Murphy E., Coll K. E., Njogu R. M. Kinetics and mechanisms of glutamate transport across the mitochondrial membrane. Ann N Y Acad Sci. 1980;341:593–608. doi: 10.1111/j.1749-6632.1980.tb47201.x. [DOI] [PubMed] [Google Scholar]
