Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1985 Dec 1;232(2):459–466. doi: 10.1042/bj2320459

Haemoglobin-catalysed retinoic acid 5,6-epoxidation.

H Iwahashi, A Ikeda, R Kido
PMCID: PMC1152902  PMID: 4091803

Abstract

Examination of the subcellular distribution of retinoic acid 5,6-epoxidase activity in rat liver and human liver homogenates showed that there is a prominent peak of activity in a high-density fraction. A corresponding peak was also detected in rat blood and human blood. Retinoic acid 5,6-epoxidation was catalysed by human blood cells but not by human plasma, and purified human haemoglobin also catalysed the epoxidation of retinoic acid to 5,6-epoxyretinoic acid. These results suggest that retinoic acid 5,6-epoxidase activity in human liver and rat liver homogenates is partially due to the presence of residual blood cells, and particularly haemoglobin, in the homogenates. In the retinoic acid 5,6-epoxidation catalysed by human haemoglobin, molecular O2 was required and its reaction was stimulated by Triton X-100. Boiling of haemoglobin solution resulted in an 94% decrease in the activity. NADPH (1 mM) and NADH (1 mM) completely [2-mercaptoethanol (5 mM) almost completely] inhibited the 5,6-epoxidation catalysed by haemoglobin, but catalase, superoxide dismutase and mannitol showed no inhibitory effect. CN- ion (100 mM) inhibited the reaction, but N3- ion (100 mM) did not.

Full text

PDF
459

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beaufay H., Amar-Costesec A., Feytmans E., Thinès-Sempoux D., Wibo M., Robbi M., Berthet J. Analytical study of microsomes and isolated subcellular membranes from rat liver. I. Biochemical methods. J Cell Biol. 1974 Apr;61(1):188–200. doi: 10.1083/jcb.61.1.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dairman W., Christenson J. G. Properties of human red blood cell 1-3,4-dihydroxyphenylalanine decarboxylating activity. Eur J Pharmacol. 1973 May;22(2):135–140. doi: 10.1016/0014-2999(73)90003-4. [DOI] [PubMed] [Google Scholar]
  3. Frolik C. A., Roberts A. B., Tavela T. E., Roller P. P., Newton D. L., Sporn M. B. Isolation and identification of 4-hydroxy- and 4-oxoretinoic acid. In vitro metabolites of all-trans-retinoic acid in hamster trachea and liver. Biochemistry. 1979 May 15;18(10):2092–2097. doi: 10.1021/bi00577a039. [DOI] [PubMed] [Google Scholar]
  4. Frolik C. A., Tavela T. E., Newton D. L., Sporn M. B. In vitro metabolism and biological activity of all-trans-retinoic acid and its metabolites in hamster trachea. J Biol Chem. 1978 Oct 25;253(20):7319–7324. [PubMed] [Google Scholar]
  5. John K. V., Lakshmanan M. R., Cama H. R. Preparation, properties and metabolism of 5,6-monoepoxyretinoic acid. Biochem J. 1967 May;103(2):539–543. doi: 10.1042/bj1030539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Juchau M. R., Symms K. G. Aniline hydroxylation in the human placenta--mechanistic aspects. Biochem Pharmacol. 1972 Aug 1;21(15):2053–2064. doi: 10.1016/0006-2952(72)90159-1. [DOI] [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
  9. McCormick A. M., Napoli J. L. Identification of 5,6-epoxyretinoic acid as an endogenous retinol metabolite. J Biol Chem. 1982 Feb 25;257(4):1730–1735. [PubMed] [Google Scholar]
  10. McCormick A. M., Napoli J. L., Schnoes H. K., DeLuca H. F. Isolation and identification of 5, 6-epoxyretinoic acid: a biologically active metabolite of retinoic acid. Biochemistry. 1978 Sep 19;17(19):4085–4090. doi: 10.1021/bi00612a033. [DOI] [PubMed] [Google Scholar]
  11. Mieyal J. J., Ackerman R. S., Blumer J. L., Freeman L. S. Characterization of Enzyme-like activity of human hemoglobin. Properties of the hemoglobin-P-450 reductase-coupled aniline hydroxylase system. J Biol Chem. 1976 Jun 10;251(11):3436–3441. [PubMed] [Google Scholar]
  12. Mieyal J. J., Blumer J. L. Accleration of autooxidation of human oxyhemoglobin by aniline and its relation to hemoglobin-catalyzed aniline hydroxylation. J Biol Chem. 1976 Jun 10;251(11):3442–3446. [PubMed] [Google Scholar]
  13. Morgan B., Thompson J. N. The preparation and biological activity of methyl 5,6-epoxy-retinoate. Biochem J. 1966 Dec;101(3):835–842. doi: 10.1042/bj1010835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Muraoka S., Enomoto H., Sugiyama M., Yamasaki H. The mechanism of the reduction of cytochrome c by xanthine oxidase. Biochim Biophys Acta. 1967 Sep 6;143(2):408–415. doi: 10.1016/0005-2728(67)90094-1. [DOI] [PubMed] [Google Scholar]
  15. Reid R., Nelson E. C., Mitchell E. D., McGregor M. L., Waller G. R., John K. V. Mass spectral analysis of eleven analogs of vitamin A. Lipids. 1973 Oct;8(10):558–565. doi: 10.1007/BF02532712. [DOI] [PubMed] [Google Scholar]
  16. Roberts A. B., Nichols M. D., Newton D. L., Sporn M. B. In vitro metabolism of retinoic acid in hamster intestine and liver. J Biol Chem. 1979 Jul 25;254(14):6296–6302. [PubMed] [Google Scholar]
  17. Sietsema W. K., DeLuca H. F. In vitro epoxidation of all-trans-retinoic acid in rat tissue homogenates. Biochem Biophys Res Commun. 1979 Oct 29;90(4):1091–1097. doi: 10.1016/0006-291x(79)91147-1. [DOI] [PubMed] [Google Scholar]
  18. Sietsema W. K., DeLuca H. F. Retinoic acid 5,6-epoxidase. Properties and biological significance. J Biol Chem. 1982 Apr 25;257(8):4265–4270. [PubMed] [Google Scholar]
  19. Symms K. G., Juchau M. R. The aniline hydroxylase and nitroreductase activities of partially purified cytochromes P-450 and P-420, and cytochrome b5 solubilized from rabbit hepatic microsomes. Drug Metab Dispos. 1974 Mar-Apr;2(2):194–201. [PubMed] [Google Scholar]
  20. TAPPEL A. L. The mechanism of the oxidation of unsaturated fatty acids catalyzed by hematin compounds. Arch Biochem Biophys. 1953 Jun;44(2):378–395. doi: 10.1016/0003-9861(53)90056-3. [DOI] [PubMed] [Google Scholar]
  21. Yamabe H., Lovenberg W. Decarboxylation of 3,4-dihydroxyphenylalanine by oxyhemoglobin. Biochem Biophys Res Commun. 1972 May 26;47(4):733–739. doi: 10.1016/0006-291x(72)90553-0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES