Abstract
Essentially chlorophyll-free mitochondria were isolated from green leaves of spinach (Spinacia oleracea L. cv. Viking II). Uncoupled oxidation of exogenous NADPH (1 mM) to oxygen had an optimum at pH 6.0, and activity was relatively low at pH 7.0, even in the presence of 1 mM-CaCl2. There was a proportional increase in the apparent Km for NADPH with decreasing H+ concentrations, suggesting that NADPH protonated on the 2'-phosphate group was the true substrate. Exogenous NADH was oxidized by oxygen with an optimum at pH 6.9. Under low-cation conditions, EGTA or EDTA (both 1 mM) had no effect on the Vmax. of NADH oxidation, although the removal of bivalent cations from the membrane surface by the chelators could be observed by use of 9-aminoacridine fluorescence. In contrast, under high-cation conditions, chelators lowered the Vmax. by about 50%, probably due to a better approach of the negatively charged chelators to the negative membrane surface than under low-cation conditions. In a low-cation medium, the Vmax. of NADH oxidation was increased by about 50% by the addition of cations. This was caused by a lowering of the size of the negative surface potential through charge screening. In contrast with other cations, La3+ inhibited NADH oxidation, possibly through binding to lipids essential for NADH oxidation. The apparent Km for NADH varied 6-fold in response to changes in the size of the surface potential, suggesting that the approach of the negatively charged NADH to the active site is hampered by the negative surface potential. The results demonstrate that the spinach leaf cell can regulate the mitochondrial NAD(P)H oxidation through several mechanisms: the pH; the cation concentration in general; and the concentration of Ca2+ in particular. The results also emphasize the importance of electrostatic considerations when investigating the kinetic behaviour of membrane-bound enzymes.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agius L., Rolls B. J., Rowe E. A., Williamson D. H. Increased lipogenesis in brown adipose tissue of lactating rats fed a cafeteria diet. The possible involvement of insulin in brown adipose tissue hypertrophy. FEBS Lett. 1981 Jan 12;123(1):45–48. doi: 10.1016/0014-5793(81)80016-6. [DOI] [PubMed] [Google Scholar]
- Arron G. P., Edwards G. E. Oxidation of Reduced Nicotinamide Adenine Dinucleotide Phosphate by Potato Mitochondria: INHIBITION BY SULFHYDRYL REAGENTS. Plant Physiol. 1980 Apr;65(4):591–594. doi: 10.1104/pp.65.4.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arron G. P., Edwards G. E. Oxidation of reduced nicotinamide adenine dinucleotide phosphate by plant mitochondria. Can J Biochem. 1979 Dec;57(12):1392–1399. doi: 10.1139/o79-185. [DOI] [PubMed] [Google Scholar]
- Bergman A., Gardeström P., Ericson I. Method to Obtain a Chlorophyll-free Preparation of Intact Mitochondria from Spinach Leaves. Plant Physiol. 1980 Sep;66(3):442–445. doi: 10.1104/pp.66.3.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chow W. S., Barber J. Salt-dependent changes of 9-aminoacridine fluorescence as a measure of charge densities of membrane surfaces. J Biochem Biophys Methods. 1980 Sep;3(3):173–185. doi: 10.1016/0165-022x(80)90016-0. [DOI] [PubMed] [Google Scholar]
- Coleman J. O.D., Palmer J. M. Role of Ca(2+) in the oxidation of exogenous NADH by plant mitochondria. FEBS Lett. 1971 Oct 1;17(2):203–208. doi: 10.1016/0014-5793(71)80148-5. [DOI] [PubMed] [Google Scholar]
- Gardeström P., Bergman A., Ericson I. Oxidation of Glycine via the Respiratory Chain in Mitochondria Prepared from Different Parts of Spinach. Plant Physiol. 1980 Feb;65(2):389–391. doi: 10.1104/pp.65.2.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hackett D. P. Effects of salts on DPNH oxidase activity & structure of sweet potato mitochondria. Plant Physiol. 1961 Jul;36(4):445–452. doi: 10.1104/pp.36.4.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnston S. P., Møller I. M., Palmer J. M. The stimulation of exogenous NADH oxidation in Jerusalem artichoke mitochondria by screening of charges on the membranes. FEBS Lett. 1979 Dec 1;108(1):28–32. doi: 10.1016/0014-5793(79)81171-0. [DOI] [PubMed] [Google Scholar]
- Koeppe D. E., Miller R. J. Oxidation of reduced nicotinamide adenine dinucleotide phosphate by isolated corn mitochondria. Plant Physiol. 1972 Mar;49(3):353–357. doi: 10.1104/pp.49.3.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Moore A. L., Akerman K. E. Ca2+ stimulation of the external NADH dehydrogenase in Jerusalem artichoke (Helianthus tuberosum) mitochondria. Biochem Biophys Res Commun. 1982 Nov 30;109(2):513–517. doi: 10.1016/0006-291x(82)91751-x. [DOI] [PubMed] [Google Scholar]
- Møller I. M., Johnston S. P., Palmer J. M. A specific role for Ca2+ in the oxidation of exogenous NADH by Jerusalem-artichoke (Helianthus tuberosus) mitochondria. Biochem J. 1981 Feb 15;194(2):487–495. doi: 10.1042/bj1940487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Møller I. M., Kay C. J., Palmer J. M. Electrostatic screening stimulates rate-limiting steps in mitochondrial electron transport. Biochem J. 1984 Nov 1;223(3):761–767. doi: 10.1042/bj2230761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Møller I. M., Palmer J. M. Charge screening by cations affects the conformation of the mitochondrial inner membrane. A study of exogenous MAD(P)H oxidation in plant mitochondria. Biochem J. 1981 Jun 1;195(3):583–588. doi: 10.1042/bj1950583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Møller I. M., Schwitzguébel J. P., Palmer J. M. Binding and screening by cations and the effect on exogenous NAD(P)H oxidation in Neurospora crassa mitochondria. Eur J Biochem. 1982 Mar;123(1):81–88. doi: 10.1111/j.1432-1033.1982.tb06501.x. [DOI] [PubMed] [Google Scholar]
- NAVAZIO F., ERNSTER B. B., ERNSTER L. Studies on TPN-linked oxidations. II. The quantitative significance of liver lactic dehydrogenase as a catalyzer of TPNH-oxidation. Biochim Biophys Acta. 1957 Nov;26(2):416–421. doi: 10.1016/0006-3002(57)90024-0. [DOI] [PubMed] [Google Scholar]
- Nash D., Wiskich J. T. Properties of substantially chlorophyll-free pea leaf mitochondria prepared by sucrose density gradient separation. Plant Physiol. 1983 Mar;71(3):627–634. doi: 10.1104/pp.71.3.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nałecz M. J., Zborowski J., Famulski K. S., Wojtczak L. Effect of phospholipid composition on the surface potential of liposomes and the activity of enzymes incorporated. Eur J Biochem. 1980 Nov;112(1):75–80. doi: 10.1111/j.1432-1033.1980.tb04988.x. [DOI] [PubMed] [Google Scholar]
- Searle G. F., Barber J., Mills J. D. 9-amino-acridine as a probe of the electrical double layer associated with the chloroplast thylakoid membranes. Biochim Biophys Acta. 1977 Sep 14;461(3):413–425. doi: 10.1016/0005-2728(77)90230-4. [DOI] [PubMed] [Google Scholar]
- Siegenthaler P. A., Depéry F. Influence of unsaturated fatty acids in chloroplasts. Shift of the pH optimum of electron flow and relations to deltapH, thylakoid internal pH and proton uptake. Eur J Biochem. 1976 Jan 15;61(2):573–580. doi: 10.1111/j.1432-1033.1976.tb10052.x. [DOI] [PubMed] [Google Scholar]
- Wojtczak L., Famulski K. S., Nałecz M. J., Zborowski J. Influence of the surface potential on the Michaelis constant of membrane-bound enzymes: effect of membrane solubilization. FEBS Lett. 1982 Mar 22;139(2):221–224. doi: 10.1016/0014-5793(82)80856-9. [DOI] [PubMed] [Google Scholar]
- Wojtczak L., Nałecz M. J. Surface change of biological membranes as a possible regulator of membrane-bound enzymes. Eur J Biochem. 1979 Feb 15;94(1):99–107. doi: 10.1111/j.1432-1033.1979.tb12876.x. [DOI] [PubMed] [Google Scholar]
