Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1985 Dec 1;232(2):501–504. doi: 10.1042/bj2320501

Adenosine-receptor-mediated stimulation of low-Km GTPase in guinea-pig cerebral cortex.

V Hausleithner, M Freissmuth, W Schütz
PMCID: PMC1152908  PMID: 3004407

Abstract

Inhibition of receptor-coupled adenylate cyclase by hormones is proposed to be associated with GTP hydrolysis. Since adenosine inhibits cerebral-cortical adenylate cyclase via A1 adenosine receptors, the present study attempts to verify this mechanism for A1-selective adenosine derivatives. In guinea-pig cortical membranes N6-(phenylisopropyl)adenosine (PIA) increased the Vmax. of the low-Km GTPase, with an EC50 (concentration causing 50% of maximal stimulation) of about 0.1 microM, and the stimulatory effect was competitively antagonized by 5 microM-8-phenyltheophylline. The rank order of potency of the stereoisomers of PIA and of 5-(N-ethylcarboxamido)adenosine (NECA) to stimulate GTPase correlated with their ability to inhibit adenylate cyclase activity (R-PIA greater than NECA greater than S-PIA). Competition binding studies with (-)-N6- ([125I]iodo-4-hydroxyphenylisopropyl)adenosine suggest that adenylyl imidodiphosphate (p[NH]ppA), an essential component of the GTPase assay system, is a more potent A1-receptor agonist than ATP, with an IC50 (concentration giving half-maximal displacement of radioligand binding) of 7.9 microM. On the basis of the p[NH]ppA concentration used in the GTPase assay (1.25 mM), enzyme stimulation by adenosine seems to be highly underestimated. Nevertheless, adenosine-induced GTP hydrolysis reflects an increased turnover of guanine nucleotides at the Ni regulatory site and appears to be a crucial step in the sequence of events processing the inhibitory signal to adenylate cyclase.

Full text

PDF
501

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aktories K., Schultz G., Jakobs K. H. Adenosine receptor-mediated stimulation of GTP hydrolysis in adipocyte membranes. Life Sci. 1982 Jan 18;30(3):269–275. doi: 10.1016/0024-3205(82)90508-2. [DOI] [PubMed] [Google Scholar]
  2. Aktories K., Schultz G., Jakobs K. H. Stimulation of a low Km GTPase by inhibitors of adipocyte adenylate cyclase. Mol Pharmacol. 1982 Mar;21(2):336–342. [PubMed] [Google Scholar]
  3. Bruns R. F., Daly J. W., Snyder S. H. Adenosine receptors in brain membranes: binding of N6-cyclohexyl[3H]adenosine and 1,3-diethyl-8-[3H]phenylxanthine. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5547–5551. doi: 10.1073/pnas.77.9.5547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cassel D., Selinger Z. Catecholamine-stimulated GTPase activity in turkey erythrocyte membranes. Biochim Biophys Acta. 1976 Dec 8;452(2):538–551. doi: 10.1016/0005-2744(76)90206-0. [DOI] [PubMed] [Google Scholar]
  5. Cooper D. M., Londos C., Rodbell M. Adenosine receptor-mediated inhibition of rat cerebral cortical adenylate cyclase by a GTP-dependent process. Mol Pharmacol. 1980 Nov;18(3):598–601. [PubMed] [Google Scholar]
  6. Feldstein J. B., Silverman D. N. Purification and characterization of carbonic anhydrase from the saliva of the rat. J Biol Chem. 1984 May 10;259(9):5447–5453. [PubMed] [Google Scholar]
  7. Franklin P. H., Hoss W. Opiates stimulate low Km GTPase in brain. J Neurochem. 1984 Oct;43(4):1132–1135. doi: 10.1111/j.1471-4159.1984.tb12853.x. [DOI] [PubMed] [Google Scholar]
  8. Goodman R. R., Cooper M. J., Gavish M., Snyder S. H. Guanine nucleotide and cation regulation of the binding of [3H]cyclohexyladenosine and [3H]diethylphenylxanthine to adenosine A1 receptors in brain membranes. Mol Pharmacol. 1982 Mar;21(2):329–335. [PubMed] [Google Scholar]
  9. Koski G., Klee W. A. Opiates inhibit adenylate cyclase by stimulating GTP hydrolysis. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4185–4189. doi: 10.1073/pnas.78.7.4185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lohse M. J., Lenschow V., Schwabe U. Two affinity states of Ri adenosine receptors in brain membranes. Analysis of guanine nucleotide and temperature effects on radioligand binding. Mol Pharmacol. 1984 Jul;26(1):1–9. [PubMed] [Google Scholar]
  11. Neer E. J., Lok J. M., Wolf L. G. Purification and properties of the inhibitory guanine nucleotide regulatory unit of brain adenylate cyclase. J Biol Chem. 1984 Nov 25;259(22):14222–14229. [PubMed] [Google Scholar]
  12. Onali P., Olianas M. C., Schwartz J. P., Costa E. Involvement of a high-affinity GTPase in the inhibitory coupling of striatal muscarinic receptors to adenylate cyclase. Mol Pharmacol. 1983 Nov;24(3):380–386. [PubMed] [Google Scholar]
  13. Schwabe U., Trost T. Characterization of adenosine receptors in rat brain by (-)[3H]N6-phenylisopropyladenosine. Naunyn Schmiedebergs Arch Pharmacol. 1980 Sep;313(3):179–187. doi: 10.1007/BF00505731. [DOI] [PubMed] [Google Scholar]
  14. Schütz W., Steurer G., Tuisl E., Plass H. Phosphorylated adenosine derivatives as low-affinity adenosine-receptor agonists. Methodological implications for the adenylate cyclase assay. Biochem J. 1984 May 15;220(1):207–212. doi: 10.1042/bj2200207. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES