Skip to main content
Cellular and Molecular Neurobiology logoLink to Cellular and Molecular Neurobiology
. 2005 Dec;25(8):1225–1244. doi: 10.1007/s10571-005-8500-3

Subcellular Localization and Differentiation-Induced Redistribution of the Protein Tyrosine Phosphatase PTP-BL in Neuroblastoma Cells

Marco van Ham 1, Lottie Kemperman 1, Mietske Wijers 1, Jack Fransen 1, Wiljan Hendriks 1,2,
PMCID: PMC11529222  PMID: 16388334

Abstract

  1. In cells of epithelial origin the protein tyrosine phosphatase PTP-BL is predominantly localized at the apical membrane of polarized cells. This large submembranous multidomain PTP is also expressed in cells of neuronal origin. We studied the localization of PTP-BL in mouse neuroblastoma cells utilizing EGFP-tagged versions of the protein.

  2. In proliferating Neuro-2a cells, immunofluorescence and immuno-electron microscopy revealed a submembranous FERM domain-dependent localization at cell–cell boundaries for EGFP-PTP-BL. Additionally, significant amounts of EGFP-PTP-BL are located in the cytoplasm as well as in nuclei. Upon serum depletion-induced differentiation of Neuro-2a cells, a partial shift of EGFP-PTP-BL from a cortical localization to cytoskeleton-like F-actin-positive structures is observed. Parallel biochemical studies corroborate this finding and reveal a serum depletion-induced shift of EFGP-PTP-BL from a membrane(-associated) fraction to an NP40-soluble cytoskeletal fraction.

  3. Different pools of PTP-BL-containing protein complexes can be discerned in neuronal cells, reflecting distinct molecular microenvironments in which PTP-BL may exert its function.

Keywords: cytoskeleton, differentiation, FERM domain, PDZ domain, redistribution

References

  1. Bompard, G., Martin, M., Roy, C., Vignon, F., and Freiss, G. (2003). Membrane targeting of protein tyrosine phosphatase PTPL1 through its FERM domain via binding to phosphatidylinositol 4,5-biphosphate. J. Cell Sci.116:2519–2530. [DOI] [PubMed] [Google Scholar]
  2. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.72:248–254. [DOI] [PubMed] [Google Scholar]
  3. Calautti, E., Grossi, M., Mammucari, C., Aoyama, Y., Pirro, M., Ono, Y., Li, J., and Dotto, G. P. (2002). Fyn tyrosine kinase is a downstream mediator of Rho/PRK2 function in keratinocyte cell–cell adhesion. J. Cell Biol.156:137–148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cans, C., Mangano, R., Barila, D., Neubauer, G., and Superti-Furga, G. (2000). Nuclear tyrosine phosphorylation: The beginning of a map. Biochem. Pharmacol.60:1203–1215. [DOI] [PubMed] [Google Scholar]
  5. Chen, R., Kim, O., Li, M., Ziong, X., Guan, J., Kung, H., Chen, H., Shimizu, Y., and Qiu, Y. (2001). Regulation of the PH-domain-containing tyrosine kinase Etk by focal adhesion kinase through the FERM domain. Nat. Cell Biol.3:439–444. [DOI] [PubMed] [Google Scholar]
  6. Chida, D., Kume, T., Mukouyama, Y., Tabata, S., Nomura, N., Thomas, M. L., Watanabe, T., and Oishi, M. (1995). Characterization of a protein tyrosine phosphatase (RIP) expressed at a very early stage of differentiation in both mouse erythroleukemia and embryonal carcinoma cells. FEBS Lett.358:233–239. [DOI] [PubMed] [Google Scholar]
  7. Chu, D. T., and Klymkowsky, M. W. (1989). The appearance of acetylated alpha-tubulin during early development and cellular differentiation in Xenopus. Dev. Biol.136:104–117. [DOI] [PubMed] [Google Scholar]
  8. Ciccarelli, F. D., Bork, P., and Kerkhoff, E. (2003). The KIND module: A putative signalling domain evolved from the C lobe of the protein kinase fold. Trends Biochem. Sci.28:349–352. [DOI] [PubMed] [Google Scholar]
  9. Cragg, G., and Kellie, S. (2001). A functional nuclear localization sequence in the C-terminal domain of SHP-1. J. Biol. Chem.276:23719–23725. [DOI] [PubMed] [Google Scholar]
  10. Cuppen, E., Gerrits, H., Pepers, B., Wieringa, B., and Hendriks, W. (1998). PDZ motifs in PTP-BL and RIL bind to internal protein segments in the LIM domain protein RIL. Mol. Biol. Cell9:671–683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cuppen, E., van Ham, M., Pepers, B., Wieringa, B., and Hendriks, W. (1999a). Identification and molecular characterization of BP75, a novel bromodomain-containing protein. FEBS Lett.459:291–298. [DOI] [PubMed] [Google Scholar]
  12. Cuppen, E., van Ham, M., Wansink, D. G., de Leeuw, A., Wieringa, B., and Hendriks, W. (2000). The zyxin-related protein TRIP6 interacts with PDZ motifs in the adaptor protein RIL and the protein tyrosine phosphatase PTP-BL. Eur. J. Cell Biol.79:283–293. [DOI] [PubMed] [Google Scholar]
  13. Cuppen, E., Wijers, M., Schepens, J., Fransen, J., Wieringa, B., and Hendriks, W. (1999b). A FERM domain governs apical confinement of PTP-BL in epithelial cells. J. Cell Sci.112:3299–3308. [DOI] [PubMed] [Google Scholar]
  14. de Hoop, M. J., Meyn, L., and Dotti, C. G. (1998). Neuroectodermal cells, culturing hippocampal neurons and astrocytes from fetal rodent brain. In: Celis, J. E. (ed.), Cell Biology: A Laboratory Handbook, 2nd edn., Vol. 1., Academic press, San Diego, CA, pp. 154–163. [Google Scholar]
  15. Erdmann, K. S. (2003). The protein tyrosine phosphatase PTP-Basophil/Basophil-like. Interacting proteins and molecular functions. Eur. J. Biochem.270:4789–4798. [DOI] [PubMed] [Google Scholar]
  16. Erdmann, K. S., Kuhlmann, J., Lessmann, V., Hermann, L., Eulenburg, V., Müller, O., and Heumann, R. (2000). The adenomatous polyposis coli-protein (APC) interacts with the protein tyrosine phosphatase PTP-BL via an alternatively spliced PDZ domain. Oncogene19:3894–3901. [DOI] [PubMed] [Google Scholar]
  17. Gross, C., Heumann, R., and Erdmann, K. S. (2001). The protein kinase C-related kinase PRK2 interacts with the protein tyrosine phosphatase PTP-BL via a novel PDZ domain binding motif. FEBS Lett.496:101–104. [DOI] [PubMed] [Google Scholar]
  18. Harris, B. Z., Hillier, B. J., and Lim, W. A. (2001). Energetic determinants of internal motif recognition by PDZ domains. Biochemistry40:5921–5930. [DOI] [PubMed] [Google Scholar]
  19. Hendriks, W., Schepens, J., Bächner, D., Rijss, J., Zeeuwen, P., Zechner, U., Hameister, H., and Wieringa, B. (1995). Molecular cloning of a mouse epithelial protein-tyrosine phosphatase with similarities to submembranous proteins. J. Cell. Biochem.59:418–430. [DOI] [PubMed] [Google Scholar]
  20. Herrmann, L., Dittmar, T., and Erdmann, K. S. (2003). The protein tyrosine phosphatase PTP-BL associates with the midbody and is involved in the regulation of cytokinesis. Mol. Biol. Cell14:230–240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Irie, S., Hachiya, T., Rabizadeh, S., Maruyama, W., Mukai, J., Li, Y., Reed, J. C., Bredesen, D. E., and Sato, T. A. (1999). Functional interaction of Fas-associated phosphatase-1 (FAP-1) with p75(NTR) and their effect on NF-κB activation. FEBS Lett.460:191–198. [DOI] [PubMed] [Google Scholar]
  22. Kaul, S. C., Kawai, R., Nomura, H., Mitsui, Y., Reddel, R. R., and Wadhwa, R. (1999). Identification of a 55-kDa ezrin-related protein that induces cytoskeletal changes and localizes to the nucleolus. Exp. Cell Res.250:51–61. [DOI] [PubMed] [Google Scholar]
  23. Kimber, W., Deak, M., Prescott, A., and Alessi, D. (2003). Interaction of the protein tyrosine phosphatase PTPL1 with the PtdIns(3,4)P2-binding adaptor protein TAPP1. Biochem. J.376:525–535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Koenderink, J. B., Geibel, S., Grabsch, E., De Pont, J. J., Bamberg, E., and Friedrich, T. (2003). Electrophysiological analysis of the mutated Na,K-ATPase cation binding pocket. J. Biol. Chem.278:51213–51222. [DOI] [PubMed] [Google Scholar]
  25. Lam, M. H., Michell, B. J., Fodero-Tavoletti, M. T., Kemp, B. E., Tonks, N. K., and Tiganis, T. (2001). Cellular stress regulates the nucleocytoplasmic distribution of the protein-tyrosine phosphatase TCPTP. J. Biol. Chem.276:37700–37707. [DOI] [PubMed] [Google Scholar]
  26. Nakai, K., and Horton, P. (1999). PSORT: A program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem. Sci.24:34–36. [DOI] [PubMed] [Google Scholar]
  27. Neufeld, K. L., Nix, D. A., Bogerd, H., Kang, Y. B., Beckerle, M. C., Cullen, B. R., and White, R. L. (2000). Adenomatous polyposis coli protein contains two nuclear export signals and shuttles between the nucleus and cytoplasm. Proc. Natl. Acad. Sci. U.S.A.97:12085–12090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ostman, A., and Böhmer, F. D. (2001). Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatases. Trends Cell Biol.11:258–266. [DOI] [PubMed] [Google Scholar]
  29. Palmer, A., Zimmer, M., Erdmann, K. S., Eulenburg, V., Porthin, A., Heumann, R., Deutsch, U., and Klein, R. (2002). EphrinB phosphorylation and reverse signaling: Regulation by Src kinases and PTP-BL phosphatase. Mol. Cell9:725–737. [DOI] [PubMed] [Google Scholar]
  30. Prasad, K. N., and Hsie, A. W. (1971). Morphologic differentiation of mouse neuroblastoma cells induced in vitro by dibutyryl adenosine 3′:5′-cyclic monophosphate. Nat. New Biol.233:141–142. [DOI] [PubMed] [Google Scholar]
  31. Ross, J., Olmsted, J. B., and Rosenbaum, J. L. (1975). The ultrastructure of mouse neuroblastoma cells in tissue culture. Tissue Cell7:107–135. [DOI] [PubMed] [Google Scholar]
  32. Rubinfeld, B., Souza, B., Albert, I., Munemitsu, S., and Polakis, P. (1995). The APC protein and E-cadherin form similar but independent complexes with alpha-catenin, beta-catenin, and plakoglobin. J. Biol. Chem.270:5549–5555. [DOI] [PubMed] [Google Scholar]
  33. Ruppert, S. M., McCulloch, V., Meyer, M., Bautista, C., Falkowski, M., Stunnenberg, H. G., and Hernandez, N. (1996). Monoclonal antibodies directed against the amino-terminal domain of human TBP cross-react with TBP from other species. Hybridoma15:55–68. [DOI] [PubMed] [Google Scholar]
  34. Saras, J., Franzén, P., Aspenström, P., Hellman, U., Gonez, L. J., and Heldin, C.-H. (1997). A novel GTPase-activating protein for Rho interacts with a PDZ domain of the protein-tyrosine phosphatase PTPL1. J. Biol. Chem.272:24333–24338. [DOI] [PubMed] [Google Scholar]
  35. Thomas, T., Voss, A. K., and Gruss, P. (1998). Distribution of a murine protein tyrosine phosphatase BL-beta-galactosidase fusion protein suggests a role in neurite outgrowth. Dev. Dyn.212:250–257. [DOI] [PubMed] [Google Scholar]
  36. Tonks, N. K., and Neel, B. G. (2001). Combinatorial control of the specificity of protein tyrosine phosphatases. Curr. Opin. Cell Biol.13:182–195. [DOI] [PubMed] [Google Scholar]
  37. Tsukita, S., and Yonemura, S. (1999). Cortical actin organization: Lessons from ERM (ezrin/radixin/moesin) proteins. J. Biol. Chem.274:34507–34510. [DOI] [PubMed] [Google Scholar]
  38. Ungefroren, H., Kruse, M., Trauzold, A., Roeschmann, S., Roeder, C., Arlt, A., Henne-Bruns, D., and Kalthoff, H. (2001). FAP-1 in pancreatic cancer cells: Functional and mechanistic studies on its inhibitory role in CD95-mediated apoptosis. J. Cell Sci.114:2735–2746. [DOI] [PubMed] [Google Scholar]
  39. van Ham, M., Croes, H., Schepens, J., Fransen, J., Wieringa, B., and Hendriks, W. (2003). Cloning and characterization of mCRIP2, a mouse LIM-only protein that interacts with PDZ domain IV of PTP-BL. Genes Cells8:631–644. [DOI] [PubMed] [Google Scholar]
  40. van Ham, M., and Hendriks, W. (2003). PDZ domains - glue and guide. Mol. Biol. Rep.30:69–82. [DOI] [PubMed] [Google Scholar]
  41. Wadham, C., Gamble, J. R., Vadas, M. A., and Khew-Goodall, Y. (2000). Translocation of protein tyrosine phosphatase Pez/PTPD2/PTP36 to the nucleus is associated with induction of cell proliferation. J. Cell Sci.113:3117–3123. [DOI] [PubMed] [Google Scholar]
  42. Wang, Y., Dooher, J. E., Koedood Zhao, M., and Gilmore, T. D. (1999). Characterization of mouse Trip6: A putative intracellular signaling protein. Gene234:403–409. [DOI] [PubMed] [Google Scholar]
  43. Wansink, D. G., Peters, W., Schaafsma, I., Sutmuller, R. P. M., Oerlemans, F., Adema, G., Wieringa, B., van der Zee, C. E. E. M., and Hendriks, W. (2004). Mild impairment of motor nerve repair in mice lacking PTP-BL tyrosine phosphatase activity. Physiol. Genom.19:50–60. [DOI] [PubMed] [Google Scholar]
  44. Warchol, M. E. (2002). Cell density and N-cadherin interactions regulate cell proliferation in the sensory epithelia of the inner ear. J. Neurosci.22:2607–2616. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cellular and Molecular Neurobiology are provided here courtesy of Springer

RESOURCES