Abstract
RNA interference (RNAi) is a recently discovered biological pathway that mediates post-transcriptional gene silencing. The process of RNAi is orchestrated by an increasingly well-understood cellular machinery.
The common entry point for both natural and engineered RNAi are double stranded RNA molecules known as short interfering RNAs (siRNAs), that mediate the sequence-specific identification and degradation of the targeted messenger RNA (mRNA). The study and manipulation of these siRNAs has recently revolutionized biomedical research.
In this review, we first provide a brief overview of the process of RNAi, focusing on its potential role in brain function and involvement in neurological disease. We then describe the methods developed to manipulate RNAi in the laboratory and its applications to neuroscience. Finally, we focus on the potential therapeutic application of RNAi to neurological disease.
Keywords: RNA interference, siRNA, microRNA, gene silencing, gene therapy
References
- Abdelgany, A., Wood, M., and Beeson, D. (2003). Allele-specific silencing of a pathogenic mutant acetylcholine receptor subunit by RNA interference. Hum. Mol. Genet.12:2637–2644. [DOI] [PubMed] [Google Scholar]
- Akaneya, Y., Jiang, B., and Tsumoto, T. (2005). RNAi-induced gene silencing by local electroporation in targeting brain region. J. Neurophysiol.93:594–602. [DOI] [PubMed] [Google Scholar]
- Bai, J., Ramos, R. L., Ackman, J. B., Thomas, A. M., Lee, R. V., and LoTurco, J. J. (2003). RNAi reveals doublecortin is required for radial migration in rat neocortex. Nat. Neurosci.6:1277–1283. [DOI] [PubMed] [Google Scholar]
- Cao, L., Jiao, X., Zuzga, D. S., Liu, Y., Fong, D. M., Young, D., and During, M. J. (2004). VEGF links hippocampal activity with neurogenesis, learning and memory. Nat. Genet.36:827–835. [DOI] [PubMed] [Google Scholar]
- Carmell, M. A., Zhang, L., Conklin, D. S., Hannon, G. J., and Rosenquist, T. A. (2003). Germline transmission of RNAi in mice. Nat. Struct. Biol.10:91–92. [DOI] [PubMed] [Google Scholar]
- Caudy, A. A., Myers, M., Hannon, G. J., and Hammond, S. M. (2002). Fragile, X-related protein and VIG associate with the RNA interference machinery. Genes. Dev.16:2491–2496. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang, S., Johnston, R. J., Jr., Frokjaer-Jensen, C., Lockery, S., and Hobert, O. (2004). MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode. Nature430:785–789. [DOI] [PubMed] [Google Scholar]
- Davidson, B. L., and Breakefield, X. O. (2003). Viral vectors for gene delivery to the nervous system. Nat. Rev. Neurosci.4:353–364. [DOI] [PubMed] [Google Scholar]
- Davidson, B. L., and Paulson, H. L. (2004). Molecular medicine for the brain: Silencing of disease genes with RNA interference. Lancet. Neurol.3:145–149. [DOI] [PubMed] [Google Scholar]
- Davidson, T. J., Harel, S., Arboleda, V. A., Prunell, G. F., Shelanski, M. L., Greene, L. A., and Troy, C. M. (2004). Highly efficient small interfering RNA delivery to primary mammalian neurons induces MicroRNA-like effects before mRNA degradation. J. Neurosci.24:10040–10046. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeKosky, S. T., and Marek, K. (2003). Looking backward to move forward: Early detection of neurodegenerative disorders. Science302:830–834. [DOI] [PubMed] [Google Scholar]
- Ding, H., Schwarz, D. S., Keene, A., Affar el, B., Fenton, L., Xia, X., Shi, Y., Zamore, P. D., and Xu, Z. (2003). Selective silencing by RNAi of a dominant allele that causes amyotrophic lateral sclerosis. Aging. Cell2:209–217. [DOI] [PubMed] [Google Scholar]
- Fahn, S., Bressman, S. B., and Marsden, C. D. (1998). Classification of dystonia. Adv. Neurol.78:1–10. [PubMed] [Google Scholar]
- Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature391:806–811. [DOI] [PubMed] [Google Scholar]
- Genc, S., Koroglu, T. F., and Genc, K. (2004). RNA interference in neuroscience. Brain Res. Mol. Brain Res.132:260–270. [DOI] [PubMed] [Google Scholar]
- Gitlin, L., Karelsky, S., and Andino, R. (2002). Short interfering RNA confers intracellular antiviral immunity in human cells. Nature418:430–434. [DOI] [PubMed] [Google Scholar]
- Gonzalez-Alegre, P., Miller, V. M., Davidson, B. L., and Paulson, H. L. (2003). Toward therapy for DYT1 dystonia: Allele-specific silencing of mutant TorsinA. Ann. Neurol.53:781–787. [DOI] [PubMed] [Google Scholar]
- Hannon, G. J., and Rossi, J. J. (2004). Unlocking the potential of the human genome with RNA interference. Nature431:371–378. [DOI] [PubMed] [Google Scholar]
- Hardy, J., and Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics. Science297:353–356. [DOI] [PubMed] [Google Scholar]
- Harper, S. Q., Staber, P. D., He, X., Eliason, S. L., Martins, I. H., Mao, Q., Yang, L., Kotin, R. M., Paulson, H. L., and Davidson, B. L. (2005). RNA interference improves motor and neuropathological abnormalities in a Huntington's disease mouse model. Proc. Natl. Acad. Sci. USA102:5820–5825. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heidel, J. D., Hu, S., Liu, X. F., Triche, T. J., and Davis, M. E. (2004). Lack of interferon response in animals to naked siRNAs. Nat. Biotechnol.22:1579–1582. [DOI] [PubMed] [Google Scholar]
- Holen, T., and Mobbs, C. V. (2004). Lobotomy of genes: Use of RNA interference in neuroscience. Neuroscience126:1–7. [DOI] [PubMed] [Google Scholar]
- Hommel, J. D., Sears, R. M., Georgescu, D., Simmons, D. L., and DiLeone, R. J. (2003). Local gene knockdown in the brain using viral-mediated RNA interference. Nat. Med.9:1539–1544. [DOI] [PubMed] [Google Scholar]
- Isacson, R., Kull, B., Salmi, P., and Wahlestedt, C. (2003). Lack of efficacy of ‘naked’ small interfering RNA applied directly to rat brain. Acta Physiol. Scand.179:173–177. [DOI] [PubMed] [Google Scholar]
- Jackson, A. L., Bartz, S. R., Schelter, J., Kobayashi, S. V., Burchard, J., Mao, M., Li, B., Cavet, G., and Linsley, P. S. (2003). Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol.21:635–637. [DOI] [PubMed] [Google Scholar]
- Jin, P., Zarnescu, D. C., Ceman, S., Nakamoto, M., Mowrey, J., Jongens, T. A., Nelson, D. L., Moses, K., and Warren, S. T. (2004). Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nat. Neurosci.7:113–117. [DOI] [PubMed] [Google Scholar]
- Johnston, R. J., and Hobert, O. (2003). A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature426:845–849. [DOI] [PubMed] [Google Scholar]
- Judge, A. D., Sood, V., Shaw, J. R., Fang, D., and McClintock, K., Maclachlan, I. (2005). Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat. Biotechnol.23:457–462. [DOI] [PubMed] [Google Scholar]
- Kalidas, S., and Smith, D. P. (2003). Functional genomics, fragile X syndrome, and RNA interference. Arch. Neurol.60:1197–1200. [DOI] [PubMed] [Google Scholar]
- Kao, S. C., Krichevsky, A. M., Kosik, K. S., and Tsai, L. H. (2004). BACE1 suppression by RNA interference in primary cortical neurons. J. Biol. Chem.279:1942–1949. [DOI] [PubMed] [Google Scholar]
- Kim, J., Krichevsky, A., Grad, Y., Hayes, G. D., Kosik, K. S., Church, G. M., and Ruvkun, G. (2004). Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proc. Natl. Acad. Sci. USA101:360–365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krichevsky, A. M., King, K. S., Donahue, C. P., Khrapko, K., and Kosik, K. S. (2003). A microRNA array reveals extensive regulation of microRNAs during brain development. RNA9:1274–1281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., and Tuschl, T. (2002). Identification of tissue-specific microRNAs from mouse. Curr. Biol.12:735–739. [DOI] [PubMed] [Google Scholar]
- Lewis, B. P., Burge, C. B., and Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell120:15–20. [DOI] [PubMed] [Google Scholar]
- Lim, L. P., Lau, N. C., Garrett-Engele, P., Grimson, A., Schelter, J. M., Castle, J., Bartel, D. P., Linsley, P. S., and Johnson, J. M. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature433:769–773. [DOI] [PubMed] [Google Scholar]
- Lipton, R. B., and Dodick, D. W. (2004). CGRP antagonists in the acute treatment of migraine. Lancet. Neurol.3:332. [DOI] [PubMed] [Google Scholar]
- Maxwell, M. M., Pasinelli, P., Kazantsev, A. G., and Brown, R. H., Jr. (2004). RNA interference-mediated silencing of mutant superoxide dismutase rescues cyclosporin A-induced death in cultured neuroblastoma cells. Proc. Natl. Acad. Sci. USA101:3178–3183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meister, G., and Tuschl, T. (2004). Mechanisms of gene silencing by double-stranded RNA. Nature431:343–349. [DOI] [PubMed] [Google Scholar]
- Miller, V. M., Gouvion, C. M., Davidson, B. L., and Paulson, H. L. (2004). Targeting Alzheimer's disease genes with RNA interference: An efficient strategy for silencing mutant alleles. Nucleic. Acids. Res.32:661–668. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller, V. M., Xia, H., Marrs, G. L., Gouvion, C. M., Lee, G., Davidson, B. L., and Paulson, H. L. (2003). Allele-specific silencing of dominant disease genes. Proc. Natl. Acad. Sci. USA100:7195–7200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miska, E. A., Alvarez-Saavedra, E., Townsend, M., Yoshii, A., Sestan, N., Rakic, P., Constantine-Paton, M., and Horvitz, H. R. (2004). Microarray analysis of microRNA expression in the developing mammalian brain. Genome. Biol.5:R68. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Napoli, C., Lemieux, C., and Jorgensen, R. (1990). Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell2:279–289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nasir, J., Floresco, S. B., O'Kusky, J. R., Diewert, V. M., Richman, J. M., Zeisler, J., Borowski, A., Marth, J. D., Phillips, A. G., and Hayden, M. R. (1995). Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell81:811–823. [DOI] [PubMed] [Google Scholar]
- Nollen, E. A., Garcia, S. M., van Haaften, G., Kim, S., Chavez, A., Morimoto, R. I., and Plasterk, R. H. (2004). Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation. Proc. Natl. Acad. Sci. USA101:6403–6408. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paddison, P. J., Caudy, A. A., and Hannon, G. J. (2002). Stable suppression of gene expression by RNAi in mammalian cells. Proc. Natl. Acad. Sci. USA99:1443–1448. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paddison, P. J., Silva, J. M., Conklin, D. S., Schlabach, M., Li, M., Aruleba, S., Balija, V., O'Shaughnessy, A., Gnoj, L., Scobie, K., Chang, K., Westbrook, T., Cleary, M., Sachidanandam, R., McCombie, W. R., Elledge, S. J., and Hannon, G. J. (2004). A resource for large-scale RNA-interference-based screens in mammals. Nature428:427–431. [DOI] [PubMed] [Google Scholar]
- Pardridge, W. M. (2004). Intravenous, non-viral RNAi gene therapy of brain cancer. Expert Opin. Biol. Ther.4:1103–1113. [DOI] [PubMed] [Google Scholar]
- Ralph, G. S., Radcliffe, P. A., Day, D. M., Carthy, J. M., Leroux, M. A., Lee, D. C., Wong, L. F., Bilsland, L. G., Greensmith, L., Kingsman, S. M., Mitrophanous, K. A., Mazarakis, N. D., and Azzouz, M. (2005). Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nat. Med.11:429–433. [DOI] [PubMed] [Google Scholar]
- Raoul, C., Abbas-Terki, T., Bensadoun, J. C., Guillot, S., Haase, G., Szulc, J., Henderson, C. E., and Aebischer, P. (2005). Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nat. Med.11:423–428. [DOI] [PubMed] [Google Scholar]
- Schwarz, D. S., Hutvagner, G., Du, T., Xu, Z., Aronin, N., and Zamore, P. D. (2003). Asymmetry in the assembly of the RNAi enzyme complex. Cell115:199–208. [DOI] [PubMed] [Google Scholar]
- Seitz, H., Royo, H., Bortolin, M. L., Lin, S. P., Ferguson-Smith, A. C., and Cavaille, J. (2004). A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. Genome Res.14:1741–1748. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sempere, L. F., Freemantle, S., Pitha-Rowe, I., Moss, E., Dmitrovsky, E., and Ambros, V. (2004). Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol.5:R13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sledz, C. A., Holko, M., de Veer, M. J., Silverman, R. H., and Williams, B. R. (2003). Activation of the interferon system by short-interfering RNAs. Nat. Cell Biol.5:834–839. [DOI] [PubMed] [Google Scholar]
- Soutschek, J., Akinc, A., Bramlage, B., Charisse, K., Constien, R., Donoghue, M., Elbashir, S., Geick, A., Hadwiger, P., Harborth, J., John, M., Kesavan, V., Lavine, G., Pandey, R. K., Racie, T., Rajeev, K. G., Rohl, I., Toudjarska, I., Wang, G., Wuschko, S., Bumcrot, D., Koteliansky, V., Limmer, S., Manoharan, M., and Vornlocher, H. P. (2004). Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature432:173–178. [DOI] [PubMed] [Google Scholar]
- Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H., and Schreiber, R. D. (1998). How cells respond to interferons. Annu Rev. Biochem.67:227–264. [DOI] [PubMed] [Google Scholar]
- Stevenson, M. (2004). Therapeutic potential of RNA interference. N. Engl. J. Med.351:1772–1777. [DOI] [PubMed] [Google Scholar]
- Thakker, D. R., Natt, F., Husken, D., Maier, R., Muller, M., van der Putten, H., Hoyer, D., and Cryan, J. F. (2004). Neurochemical and behavioral consequences of widespread gene knockdown in the adult mouse brain by using nonviral RNA interference. Proc. Natl. Acad. Sci. USA101:17270–17275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trotta, N., Orso, G., Rossetto, M. G., Daga, A., and Broadie, K. (2004). The hereditary spastic paraplegia gene, spastin, regulates microtubule stability to modulate synaptic structure and function. Curr. Biol. 14:1135–1147. [DOI] [PubMed] [Google Scholar]
- Vargason, J. M., Szittya, G., Burgyan, J., and Tanaka Hall, T. M. (2003). Size selective recognition of siRNA by an RNA silencing suppressor. Cell115:799–811. [DOI] [PubMed] [Google Scholar]
- Verdel, A., Jia, S., Gerber, S., Sugiyama, T., Gygi, S., Grewal, S. I., and Moazed, D. (2004). RNAi-mediated targeting of heterochromatin by the RITS complex. Science303:672–676. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson, J. F. (2005). Gene therapy yields to RNA interference. Ann. Intern. Med.143:161–164. [DOI] [PubMed] [Google Scholar]
- Wood, M. J., Trulzsch, B., Abdelgany, A., and Beeson, D. (2003). Therapeutic gene silencing in the nervous system. Hum. Mol. Genet.12(2):R279–R284. [DOI] [PubMed] [Google Scholar]
- Xia, H., Mao, Q., Paulson, H. L., and Davidson, B. L. (2002). siRNA-mediated gene silencing in vitro and in vivo. Nat. Biotechnol.20:1006–1010. [DOI] [PubMed] [Google Scholar]
- Xia, H., Mao, Q., Eliason, S. L., Harper, S. Q., Martins, I. H., Orr, H. T., Paulson, H. L., Yang, L., Kotin, R. M., and Davidson, B. L. (2004). RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat. Med.10:816–820. [DOI] [PubMed] [Google Scholar]
