Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1985 Dec 15;232(3):657–662. doi: 10.1042/bj2320657

Microtubules and nucleoside diphosphate kinase. Comparison of kinetics of GTP- and CTP-induced assembly.

K Islam, R G Burns
PMCID: PMC1152935  PMID: 4091816

Abstract

The kinetics of assembly of MAP2-tubulin microtubule protein were examined as a function of the GTP concentration in order to test the hypothesis that CTP-induced assembly results from the generation of GTP by nucleoside diphosphate kinase. These studies show that (a) there is no assembly below a minimum GTP concentration and that this represents a nucleation requirement, (b) the rate of elongation is inconsistent with a single assembly-species, and (c) the elongation rate increases markedly as the GTP concentration is raised, although GTP is not absolutely required for elongation. These assembly kinetics have been compared with those with increasing CTP concentrations, by using microtubule protein containing a very low nucleoside diphosphate kinase activity of known substrate specificity. Neither nucleation nor the observed rates of elongation can be attributed to the formation of GTP, either (a) in terms of the generation of free GTP and subsequent binding to tubulin or (b) by the direct charging of GDP bound to the tubulin exchangeable site. The results show that nucleoside diphosphate kinase is not required for CTP-induced microtubule assembly, and suggest that CTP directly effects microtubule assembly.

Full text

PDF
657

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arai T., Ihara Y., Arai K., Kaziro Y. Purification of tubulin from bovine brain and its interaction with guanine nucleotides. J Biochem. 1975 Mar;77(3):647–658. doi: 10.1093/oxfordjournals.jbchem.a130767. [DOI] [PubMed] [Google Scholar]
  2. Burns R. G., Islam K., Chapman R. The multiple phosphorylation of the microtubule-associated protein MAP2 controls the MAP2:tubulin interaction. Eur J Biochem. 1984 Jun 15;141(3):609–615. doi: 10.1111/j.1432-1033.1984.tb08236.x. [DOI] [PubMed] [Google Scholar]
  3. Burns R. G., Islam K. Direct incorporation of microtubule oligomers at high GTP concentrations. FEBS Lett. 1984 Jul 23;173(1):67–74. doi: 10.1016/0014-5793(84)81019-4. [DOI] [PubMed] [Google Scholar]
  4. Burns R. G., Islam K. Nucleosidediphosphate kinase associates with rings but not with assembled microtubules. Eur J Biochem. 1981 Jul;117(3):515–519. doi: 10.1111/j.1432-1033.1981.tb06367.x. [DOI] [PubMed] [Google Scholar]
  5. Burns R. G., Islam K. Phosphorylation of the microtubule-associated protein MAP2 by GTP. Biochem J. 1984 Dec 1;224(2):623–627. doi: 10.1042/bj2240623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burns R. G., Islam K. Stoichiometry of microtubule-associated protein (MAP2):tubulin and the localisation of the phosphorylation and cysteine residues along the MAP2 primary sequence. Eur J Biochem. 1984 Jun 15;141(3):599–608. doi: 10.1111/j.1432-1033.1984.tb08235.x. [DOI] [PubMed] [Google Scholar]
  7. Carlier M. F., Hill T. L., Chen Y. Interference of GTP hydrolysis in the mechanism of microtubule assembly: an experimental study. Proc Natl Acad Sci U S A. 1984 Feb;81(3):771–775. doi: 10.1073/pnas.81.3.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carlier M. F., Pantaloni D. Kinetic analysis of cooperativity in tubulin polymerization in the presence of guanosine di- or triphosphate nucleotides. Biochemistry. 1978 May 16;17(10):1908–1915. doi: 10.1021/bi00603a017. [DOI] [PubMed] [Google Scholar]
  9. Geahlen R. L., Haley B. E. Use of a GTP photoaffinity probe to resolve aspects of the mechanism of tubulin polymerization. J Biol Chem. 1979 Dec 10;254(23):11982–11987. [PubMed] [Google Scholar]
  10. Hamel E., del Campo A. A., Lowe M. C., Lin C. M. Interactions of taxol, microtubule-associated proteins, and guanine nucleotides in tubulin polymerization. J Biol Chem. 1981 Nov 25;256(22):11887–11894. [PubMed] [Google Scholar]
  11. Hartree E. F. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem. 1972 Aug;48(2):422–427. doi: 10.1016/0003-2697(72)90094-2. [DOI] [PubMed] [Google Scholar]
  12. Herzog W., Weber K. In vitro assembly of pure tubulin into microtubules in the absence of microtubule-associated proteins and glycerol. Proc Natl Acad Sci U S A. 1977 May;74(5):1860–1864. doi: 10.1073/pnas.74.5.1860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Huitorel P., Simon C., Pantaloni D. Nucleoside diphosphate kinase from brain. Purification and effect on microtubule assembly in vitro. Eur J Biochem. 1984 Oct 15;144(2):233–241. doi: 10.1111/j.1432-1033.1984.tb08455.x. [DOI] [PubMed] [Google Scholar]
  14. Islam K., Burns R. G. Assembly of microtubules with ATP: evidence that only a fraction of the protein is assembly-competent. FEBS Lett. 1984 Dec 10;178(2):264–270. doi: 10.1016/0014-5793(84)80613-4. [DOI] [PubMed] [Google Scholar]
  15. Islam K., Burns R. G. Microtubules and nucleoside diphosphate kinase. Nucleoside diphosphate kinase binds to co-purifying contaminants rather than to microtubule proteins. Biochem J. 1985 Dec 15;232(3):651–656. doi: 10.1042/bj2320651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Islam K., Burns R. G. Purification of a soluble monoisozyme of nucleoside diphosphate kinase from chick brain: exploitation of ionic characteristics. Anal Biochem. 1984 Feb;137(1):8–14. doi: 10.1016/0003-2697(84)90338-5. [DOI] [PubMed] [Google Scholar]
  17. Jameson L., Caplow M. Effect of guanosine diphosphate on microtubule assembly and stability. J Biol Chem. 1980 Mar 25;255(6):2284–2292. [PubMed] [Google Scholar]
  18. Johnson K. A., Borisy G. G. Kinetic analysis of microtubule self-assembly in vitro. J Mol Biol. 1977 Nov 25;117(1):1–31. doi: 10.1016/0022-2836(77)90020-1. [DOI] [PubMed] [Google Scholar]
  19. Knop J., Stremmer R., Neumann C., De Maeyer E., Macher E. Interferon inhibits the suppressor T cell response of delayed-type hypersensitivity. Nature. 1982 Apr 22;296(5859):757–759. doi: 10.1038/296757a0. [DOI] [PubMed] [Google Scholar]
  20. Kravit N. G., Regula C. S., Berlin R. D. A reevaluation of the structure of purified tubulin in solution: evidence for the prevalence of oligomers over dimers at room temperature. J Cell Biol. 1984 Jul;99(1 Pt 1):188–198. doi: 10.1083/jcb.99.1.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kuriyama R., Sakai H. Viscometric demonstration of tubulin polymerization. J Biochem. 1974 Mar;75(3):463–471. doi: 10.1093/oxfordjournals.jbchem.a130415. [DOI] [PubMed] [Google Scholar]
  22. Lee S. H., Kristofferson D., Purich D. L. Microtubule interactions with GDP provide evidence that assembly-disassembly properties depend on the method of brain microtubule protein isolation. Biochem Biophys Res Commun. 1982 Apr 29;105(4):1605–1610. doi: 10.1016/0006-291x(82)90972-x. [DOI] [PubMed] [Google Scholar]
  23. MacNeal R. K., Purich D. L. Stoichiometry and role of GTP hydrolysis in bovine neurotubule assembly. J Biol Chem. 1978 Jul 10;253(13):4683–4687. [PubMed] [Google Scholar]
  24. Mitchison T., Kirschner M. Dynamic instability of microtubule growth. Nature. 1984 Nov 15;312(5991):237–242. doi: 10.1038/312237a0. [DOI] [PubMed] [Google Scholar]
  25. Murphy D. B., Hiebsch R. R. Purification of microtubule protein from beef brain and comparison of the assembly requirements for neuronal microtubules isolated from beef and hog. Anal Biochem. 1979 Jul 1;96(1):225–235. doi: 10.1016/0003-2697(79)90577-3. [DOI] [PubMed] [Google Scholar]
  26. Penningroth S. M., Kirschner M. W. Nucleotide binding and phosphorylation in microtubule assembly in vitro. J Mol Biol. 1977 Oct 5;115(4):643–673. doi: 10.1016/0022-2836(77)90108-5. [DOI] [PubMed] [Google Scholar]
  27. Penningroth S. M., Kirschner M. W. Nucleotide specificity in microtubule assembly in vitro. Biochemistry. 1978 Feb 21;17(4):734–740. doi: 10.1021/bi00597a028. [DOI] [PubMed] [Google Scholar]
  28. Terry B. J., Purich D. L. Nucleotide release from tubulin and nucleoside-5'-diphosphate kinase action in microtubule assembly. J Biol Chem. 1979 Oct 10;254(19):9469–9476. [PubMed] [Google Scholar]
  29. Zabrecky J. R., Cole R. D. Localization of the ATP binding site on alpha-tubulin. Arch Biochem Biophys. 1983 Sep;225(2):475–481. doi: 10.1016/0003-9861(83)90056-5. [DOI] [PubMed] [Google Scholar]
  30. Zackroff R. V., Weisenberg R. C., Deery W. J. Equilibrium and kinetic analysis of microtubule assembly in the presence of guanosine diphosphate. J Mol Biol. 1980 Jun 5;139(4):641–659. doi: 10.1016/0022-2836(80)90053-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES