Abstract
We studied the effect of the plant alkaloid castanospermine on the biosynthesis and secretion of human hepatoma glycoproteins. The HepG-2 cells, grown in the presence or absence of the alkaloid, were labelled with [2-3H]mannose and then the labelled glycopeptides were prepared by Pronase digestion. This material was analysed by gel filtration on Bio-Gel P-4 before and after treatment with endo-beta-N-acetylglucosaminidase H. Castanospermine caused an accumulation of high-mannose oligosaccharides, by 70-75% over control. The major accumulated product, which could also be labelled with [3H]galactose and was only partially susceptible to alpha-mannosidase digestion, was identified by h.p.l.c. as a Glc3Man9GlcNAc. Thus the alkaloid inhibits glucosidase I in the human hepatoma cells. Analysis of total glycoproteins secreted by the cells into the medium revealed the presence of only complex oligosaccharides in both control and treated cultures, and the amount of the oligosaccharides labelled with radioactive mannose, galactose or N-acetylmannosamine, secreted by treated cells, was decreased by about 60%. The rate of secretion of total protein labelled with [35S]methionine and precipitated from the medium with trichloroacetic acid was inhibited by up to 40% in the presence of castanospermine. Pulse-chase studies utilizing [35S]methionine labelling were performed to study the effect of the alkaloid on secretion of individual plasma proteins. Immunoprecipitation at different chase times with monospecific antisera showed that castanospermine markedly decreased the secretion rates of alpha 1-antitrypsin, caeruloplasmin and, to a lesser extent, that of antithrombin-III. Secretions of apolipoprotein E, a glycoprotein containing only O-linked oligosaccharide(s), and albumin, a non-glycosylated protein, were not affected by the drug. It is suggested that castanospermine inhibits secretion of at least some glycoproteins containing N-linked oligosaccharides, owing to the inhibition of oligosaccharide processing.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Archer T. K., Tam S. P., Deugau K. V., Deeley R. G. Apolipoprotein C-II mRNA levels in primate liver. Induction by estrogen in the human hepatocarcinoma cell line, HepG2. J Biol Chem. 1985 Feb 10;260(3):1676–1681. [PubMed] [Google Scholar]
- Arumugham R. G., Tanzer M. L. Abnormal glycosylation of human cellular fibronectin in the presence of swainsonine. J Biol Chem. 1983 Oct 10;258(19):11883–11889. [PubMed] [Google Scholar]
- Bartalena L., Robbins J. Effect of tunicamycin and monensin on secretion of thyroxine-binding globulin by cultured human hepatoma (Hep G2) cells. J Biol Chem. 1984 Nov 10;259(21):13610–13614. [PubMed] [Google Scholar]
- Baumann H., Jahreis G. P. Glucose starvation leads in rat hepatoma cells to partially N-glycosylated glycoproteins including alpha 1-acid glycoproteins. Identification by endoglycolytic digestions in polyacrylamide gels. J Biol Chem. 1983 Mar 25;258(6):3942–3949. [PubMed] [Google Scholar]
- Bell-Quint J., Forte T., Graham P. Glycosylation of apolipoproteins by cultured rat hepatocytes. Effect of tunicamycin on lipoprotein secretion. Biochem J. 1981 Nov 15;200(2):409–414. doi: 10.1042/bj2000409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Björk I., Danielsson A., Fenton J. W., Jörnvall The site in human antithrombin for functional proteolytic cleavage by human thrombin. FEBS Lett. 1981 Apr 20;126(2):257–260. doi: 10.1016/0014-5793(81)80255-4. [DOI] [PubMed] [Google Scholar]
- Chandrasekaran E. V., Davila M., Nixon D. W., Goldfarb M., Mendicino J. Isolation and structures of the oligosaccharide units of carcinoembryonic antigen. J Biol Chem. 1983 Jun 10;258(11):7213–7222. [PubMed] [Google Scholar]
- Chen W. W., Lennarz W. J. Participation of a trisaccharide-lipid in glycosylation of oviduct membrane glycoproteins. J Biol Chem. 1976 Dec 25;251(24):7802–7809. [PubMed] [Google Scholar]
- Ciechanover A., Schwartz A. L., Dautry-Varsat A., Lodish H. F. Kinetics of internalization and recycling of transferrin and the transferrin receptor in a human hepatoma cell line. Effect of lysosomotropic agents. J Biol Chem. 1983 Aug 25;258(16):9681–9689. [PubMed] [Google Scholar]
- Ciechanover A., Schwartz A. L., Lodish H. F. The asialoglycoprotein receptor internalizes and recycles independently of the transferrin and insulin receptors. Cell. 1983 Jan;32(1):267–275. doi: 10.1016/0092-8674(83)90517-2. [DOI] [PubMed] [Google Scholar]
- Edwards K., Nagashima M., Dryburgh H., Wykes A., Schreiber G. Secretion of proteins from liver cells is suppressed by the proteinase inhibitor N-alpha-tosyl-L-lysyl chloromethane, but not by tunicamycin, an inhibitor of glycosylation. FEBS Lett. 1979 Apr 15;100(2):269–272. doi: 10.1016/0014-5793(79)80349-x. [DOI] [PubMed] [Google Scholar]
- Endo M., Suzuki K., Schmid K., Fournet B., Karamanos Y., Montreuil J., Dorland L., van Halbeek H., Vliegenthart J. F. The structures and microheterogeneity of the carbohydrate chains of human plasma ceruloplasmin. A study employing 500-MHz 1H-NMR spectroscopy. J Biol Chem. 1982 Aug 10;257(15):8755–8760. [PubMed] [Google Scholar]
- Finne J., Tao T. W., Burger M. M. Carbohydrate changes in glycoproteins of a poorly metastasizing wheat germ agglutinin-resistant melanoma clone. Cancer Res. 1980 Jul;40(7):2580–2587. [PubMed] [Google Scholar]
- Firestone G. L. The role of protein glycosylation in the compartmentalization and processing of mouse mammary tumor virus glycoproteins in mouse mammary tumor virus-infected rat hepatoma cells. J Biol Chem. 1983 May 25;258(10):6155–6161. [PubMed] [Google Scholar]
- Fitting T., Kabat D. Evidence for a glycoprotein "signal" involved in transport between subcellular organelles. Two membrane glycoproteins encoded by murine leukemia virus reach the cell surface at different rates. J Biol Chem. 1982 Dec 10;257(23):14011–14017. [PubMed] [Google Scholar]
- Gross V., Andus T., Tran-Thi T. A., Schwarz R. T., Decker K., Heinrich P. C. 1-deoxynojirimycin impairs oligosaccharide processing of alpha 1-proteinase inhibitor and inhibits its secretion in primary cultures of rat hepatocytes. J Biol Chem. 1983 Oct 25;258(20):12203–12209. [PubMed] [Google Scholar]
- Gross V., Tran-Thi T. A., Vosbeck K., Heinrich P. C. Effect of swainsonine on the processing of the asparagine-linked carbohydrate chains of alpha 1-antitrypsin in rat hepatocytes. Evidence for the formation of hybrid oligosaccharides. J Biol Chem. 1983 Mar 25;258(6):4032–4036. [PubMed] [Google Scholar]
- Hickman S., Kornfeld S. Effect of tunicamycin on IgM, IgA, and IgG secretion by mouse plasmacytoma cells. J Immunol. 1978 Sep;121(3):990–996. [PubMed] [Google Scholar]
- Hubbard S. C., Ivatt R. J. Synthesis and processing of asparagine-linked oligosaccharides. Annu Rev Biochem. 1981;50:555–583. doi: 10.1146/annurev.bi.50.070181.003011. [DOI] [PubMed] [Google Scholar]
- Jain R. S., Quarfordt S. H. The carbohydrate content of apolipoprotein E from human very low density lipoproteins. Life Sci. 1979 Oct 8;25(15):1315–1323. doi: 10.1016/0024-3205(79)90397-7. [DOI] [PubMed] [Google Scholar]
- Kang M. S., Elbein A. D. Alterations in the structure of the oligosaccharide of vesicular stomatitis virus G protein by swainsonine. J Virol. 1983 Apr;46(1):60–69. doi: 10.1128/jvi.46.1.60-69.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keller R. K., Swank G. D. Tunicamycin does not block ovalbumin secretion in the oviduct. Biochem Biophys Res Commun. 1978 Nov 29;85(2):762–768. doi: 10.1016/0006-291x(78)91226-3. [DOI] [PubMed] [Google Scholar]
- Kilker R. D., Jr, Saunier B., Tkacz J. S., Herscovics A. Partial purification from Saccharomyces cerevisiae of a soluble glucosidase which removes the terminal glucose from the oligosaccharide Glc3Man9GlcNAc2. J Biol Chem. 1981 May 25;256(10):5299–5603. [PubMed] [Google Scholar]
- Knowles B. B., Howe C. C., Aden D. P. Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science. 1980 Jul 25;209(4455):497–499. doi: 10.1126/science.6248960. [DOI] [PubMed] [Google Scholar]
- Krusius T. A simple method for the isolation of neutral glycopeptides by affinity chromatography. FEBS Lett. 1976 Jul 1;66(1):86–89. doi: 10.1016/0014-5793(76)80591-1. [DOI] [PubMed] [Google Scholar]
- Krusius T., Finne J. Structural features of tissue glycoproteins. Fractionation and methylation analysis of glycopeptides derived from rat brain, kidney and liver. Eur J Biochem. 1977 Sep;78(2):369–379. doi: 10.1111/j.1432-1033.1977.tb11749.x. [DOI] [PubMed] [Google Scholar]
- Ledford B. E., Davis D. F. Kinetics of serum protein secretion by cultured hepatoma cells. Evidence for multiple secretory pathways. J Biol Chem. 1983 Mar 10;258(5):3304–3308. [PubMed] [Google Scholar]
- Lemansky P., Gieselmann V., Hasilik A., von Figura K. Cathepsin D and beta-hexosaminidase synthesized in the presence of 1-deoxynojirimycin accumulate in the endoplasmic reticulum. J Biol Chem. 1984 Aug 25;259(16):10129–10135. [PubMed] [Google Scholar]
- Lodish H. F., Kong N. Glucose removal from N-linked oligosaccharides is required for efficient maturation of certain secretory glycoproteins from the rough endoplasmic reticulum to the Golgi complex. J Cell Biol. 1984 May;98(5):1720–1729. doi: 10.1083/jcb.98.5.1720. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lodish H. F., Kong N., Snider M., Strous G. J. Hepatoma secretory proteins migrate from rough endoplasmic reticulum to Golgi at characteristic rates. Nature. 1983 Jul 7;304(5921):80–83. doi: 10.1038/304080a0. [DOI] [PubMed] [Google Scholar]
- Mega T., Lujan E., Yoshida A. Studies on the oligosaccharide chains of human alpha 1-protease inhibitor. II. Structure of oligosaccharides. J Biol Chem. 1980 May 10;255(9):4057–4061. [PubMed] [Google Scholar]
- Mizrahi A., O'Malley J. A., Carter W. A., Takatsuki A., Tamura G., Sulkowski E. Glycosylation of interferons. Effects of tunicamycin on human immune interferon. J Biol Chem. 1978 Nov 10;253(21):7612–7615. [PubMed] [Google Scholar]
- Pan Y. T., Hori H., Saul R., Sanford B. A., Molyneux R. J., Elbein A. D. Castanospermine inhibits the processing of the oligosaccharide portion of the influenza viral hemagglutinin. Biochemistry. 1983 Aug 2;22(16):3975–3984. doi: 10.1021/bi00285a038. [DOI] [PubMed] [Google Scholar]
- Peters B. P., Brooks M., Hartle R. J., Krzesicki R. F., Perini F., Ruddon R. W. The use of drugs to dissect the pathway for secretion of the glycoprotein hormone chorionic gonadotropin by cultured human trophoblastic cells. J Biol Chem. 1983 Dec 10;258(23):14505–14515. [PubMed] [Google Scholar]
- Rall S. C., Jr, Weisgraber K. H., Mahley R. W. Human apolipoprotein E. The complete amino acid sequence. J Biol Chem. 1982 Apr 25;257(8):4171–4178. [PubMed] [Google Scholar]
- Sasak W., Herscovics A., Quaroni A. Cell-density-dependent changes in cell-surface glycopeptides and in adhesion of cultured intestinal epithelial cells. Biochem J. 1982 Feb 1;201(2):359–366. doi: 10.1042/bj2010359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sasak W., Quaroni A., Herscovics A. Changes in cell-surface fucose-containing glycopeptides and adhesion of cultured intestinal epithelial cells as a function of cell density. Biochem J. 1983 Apr 1;211(1):75–80. doi: 10.1042/bj2110075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saul R., Chambers J. P., Molyneux R. J., Elbein A. D. Castanospermine, a tetrahydroxylated alkaloid that inhibits beta-glucosidase and beta-glucocerebrosidase. Arch Biochem Biophys. 1983 Mar;221(2):593–597. doi: 10.1016/0003-9861(83)90181-9. [DOI] [PubMed] [Google Scholar]
- Saunier B., Kilker R. D., Jr, Tkacz J. S., Quaroni A., Herscovics A. Inhibition of N-linked complex oligosaccharide formation by 1-deoxynojirimycin, an inhibitor of processing glucosidases. J Biol Chem. 1982 Dec 10;257(23):14155–14161. [PubMed] [Google Scholar]
- Schwartz A. L., Rup D. Biosynthesis of the human asialoglycoprotein receptor. J Biol Chem. 1983 Sep 25;258(18):11249–11255. [PubMed] [Google Scholar]
- Struck D. K., Siuta P. B., Lane M. D., Lennarz W. J. Effect of tunicamycin on the secretion of serum proteins by primary cultures of rat and chick hepatocytes. Studies on transferrin, very low density lipoprotein, and serum albumin. J Biol Chem. 1978 Aug 10;253(15):5332–5337. [PubMed] [Google Scholar]
- Stubblefield E., Klevecz R., Deaven L. Synchronized mammalian cell cultures. I. Cell replication cycle and macromolecular synthesis following brief colcemid arrest of mitosis. J Cell Physiol. 1967 Jun;69(3):345–353. doi: 10.1002/jcp.1040690311. [DOI] [PubMed] [Google Scholar]
- Tabas I., Kornfeld S. Purification and characterization of a rat liver Golgi alpha-mannosidase capable of processing asparagine-linked oligosaccharides. J Biol Chem. 1979 Nov 25;254(22):11655–11663. [PubMed] [Google Scholar]
- Tai T., Yamashita K., Ito S., Kobata A. Structures of the carbohydrate moiety of ovalbumin glycopeptide III and the difference in specificity of endo-beta-N-acetylglucosaminidases CII and H. J Biol Chem. 1977 Oct 10;252(19):6687–6694. [PubMed] [Google Scholar]
- Tulsiani D. R., Harris T. M., Touster O. Swainsonine inhibits the biosynthesis of complex glycoproteins by inhibition of Golgi mannosidase II. J Biol Chem. 1982 Jul 25;257(14):7936–7939. [PubMed] [Google Scholar]
- Warren C. D., Schmit A. S., Jeanloz R. W. Chromatographic separation of oligosaccharides from mannosidosis urine. Carbohydr Res. 1983 Jun 1;116(2):171–182. doi: 10.1016/0008-6215(83)88107-5. [DOI] [PubMed] [Google Scholar]
