Skip to main content
Cellular and Molecular Neurobiology logoLink to Cellular and Molecular Neurobiology
. 2005 Apr;25(2):283–295. doi: 10.1007/s10571-005-3060-0

Synaptically Activated Ca2+ Release From Internal Stores in CNS Neurons

William N Ross 1,3,, Takeshi Nakamura 2, Shigeo Watanabe 1, Matthew Larkum 3, Nechama Lasser-Ross 1
PMCID: PMC11529495  PMID: 16047542

Abstract

Synaptically activated postsynaptic [Ca2+]i increases occur through three main pathways: Ca2+ entry through voltage-gated Ca2+ channels, Ca2+ entry through ligand-gated channels, and Ca2+ release from internal stores. The first two pathways have been studied intensively; release from stores has been the subject of more recent investigations.

Ca2+ release from stores in CNS neurons primarily occurs as a result of IP3 mobilized by activation of metabotropic glutamatergic and/or cholingergic receptors coupled to PLC. Ca2+ release is localized near spines in Purkinje cells and occurs as a wave in the primary apical dendrites of pyramidal cells in the hippocampus and cortex. The amplitude of the [Ca2+]i increase can reach several micromolar, significantly larger than the increase due to backpropagating spikes.

The large amplitude, long duration, and unique location of the [Ca2+]i increases due to Ca2+ release from stores suggests that these increases can affect specific downstream signaling mechanisms in neurons.

Keywords: dendrite, calcium, pyramidal neuron, IP3

References

  1. Alford, S., Frenguelli, B. G., Schofield, J. G., and Collingridge, G. L. (1993). Characterization of Ca2+ signals induced in hippocampal CA1 neurones by the synaptic activation of NMDA receptors. J. Physiol.469:693–716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bannister, N. J., and Larkman, A. U. (1995). Dendritic morphology of CA1 pyramidal neurones from the rat hippocampus: II. Spine distributions. J. Comp. Neurol.360:161–171. [DOI] [PubMed] [Google Scholar]
  3. Berridge, M. J. (1998). Neuronal calcium signaling. Neuron.21:13–26. [DOI] [PubMed] [Google Scholar]
  4. Bezprozvanny, I., Watras, J., and Ehrlich, B. E. (1991). Bell-shaped calcium-response curves of Ins(1,4,5)P3 and calcium gated channels from endoplasmic reticulum of cerebellum. Nature.351:751–754. [DOI] [PubMed] [Google Scholar]
  5. Bootman, M. D., and Berridge, M. J. (1996). Subcellular Ca2+ signals underlying waves and graded responses in HeLa cells. Curr. Biol.6:855–865. [DOI] [PubMed] [Google Scholar]
  6. Bootman, M. D., Niggli, E., Berridge, M. J., and Lipp, P. (1997). Imaging the heirarchal Ca2+ signalling system in HeLa cells. J. Physiol.499:307–314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown, S. P., Brenowitz, S. D., and Regehr, W. G. (2003). Brief presynaptic bursts evoke synapse-specific retrograde inhibition mediated by endogenous cannabinoids. Nat. Neurosci.6:1048–1057. [DOI] [PubMed] [Google Scholar]
  8. Callamaras, N., Marchant, J. S., Sun, X.-P., and Parker, I. (1998). Activation and coordination of InsP3-mediated elementary Ca2+ events during global Ca2+ signals in Xenopus oocytes. J. Physiol.509:81–91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Callaway, J. C., and Ross, W. N. (1995). Frequency-dependent propagation of sodium action potentials in dendrites of hippocampal CA1 pyramidal neurons. J. Neurophysiol.74:1395–1403. [DOI] [PubMed] [Google Scholar]
  10. Chen, W. R., Midtgaard, J., and Shepherd, G. M. (1997). Forward and backward propagation of dendritic impulses and their synaptic control in mitral cells. Science.278:463–467. [DOI] [PubMed] [Google Scholar]
  11. Daw, M. I., Bortolotto, Z. A., Saulle, E., Zaman, S., Collingridge, G. L., and Isaac, J. T. (2002). Phosphatidylinositol 3 kinase regulates synapse specificity of hippocampal long-term depression. Nature Neurosci.5:835–836 [DOI] [PubMed] [Google Scholar]
  12. Dudek, S. M., and Fields, R. D. (2002). Somatic action potentials are sufficient for late-phase LTP-related cell signaling. Proc. Natl. Acad. Sci. USA99:3962–3967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Emptage, N., Bliss, T. V. P., and Fine, A. (1999). Single synaptic events evoke NMDA receptor-mediated release of calcium from internal stores in hippocampal dendritic spines. Neuron22:115–124. [DOI] [PubMed] [Google Scholar]
  14. Finch, E. A., and Augustine, G. J. (1998). Local calcium signaling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites. Nature.396:753–756. [DOI] [PubMed] [Google Scholar]
  15. Finch, E. A., Turner, T. J., and Goldin, S. M. (1991). Calcium as a coagonist of inositol 1,4,5-trisphosphate-induced calcium release. Science252:443–446. [DOI] [PubMed] [Google Scholar]
  16. Garaschuk, O., Yaari, Y., and Konnerth, A. (1997). Release and sequestration of calcium by ryanodine-sensitive stores in rat hippocampal neurones. J. Physiol.502:13–30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Goldberg, J. H., Tamas, G., and Yuste, R. (2003). Ca2+ imaging of mouse neocortical interneurone dendrites: Ia-type K+ channels control action potential backpropagation. J. Physiol.551:49–65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hausser, M., Stuart, G., Racca, C., and Sakmann, B. (1995). Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons. Neuron.15:637–647. [DOI] [PubMed] [Google Scholar]
  19. Helmchen, F., Imoto, K., and Sakmann, B. (1996). Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. Biophys. J.70:1069–1081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Iino, M. (1990). Biphasic Ca2+ dependence of inositol 1,4,5-trisphosphate-induced Ca2+ release in smooth muscle cells of the guinea pig taenia caeci. J. Gen. Physiol.95:1103–1122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Irving, A. J., and Collingridge, G. L. (1998). A characterization of muscarinic receptor-mediated intracellular Ca2+ mobilization in cultured rat hippocampal neurones. J. Physiol.511:747–759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jaffe, D. B., and Brown, T. H. (1994). Metabotropic glutamate receptor activation induces calcium waves within hippocampal dendrites. J. Neurophysiol.72:471–474. [DOI] [PubMed] [Google Scholar]
  23. Jaffe, D. B., Johnston, D., Lasser-Ross, N., Lisman, J. E., Miyakawa, H., and Ross, W. N. (1992). The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons. Nature357:244–246. [DOI] [PubMed] [Google Scholar]
  24. Kapur, A., Yeckel, M., and Johnston, D. (2001). Hippocampal mossy fiber activity evokes Ca2+ release in CA3 pyramidal neurons via a metabotropic glutamate receptor pathway. Neuroscience107:59–69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Klee, C. B. (1988). Interaction of calmodulin with Ca2+ and target proteins. In Cohen, P., and Klee, C. B. (ed.), Calmodulin, Elsevier, Amsterdam, pp. 35–56. [Google Scholar]
  26. Koester, H. J., and Sakmann, B. (1998). Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory synaptic potentials. Proc. Natl. Acad. Sci. USA.95:9596–9601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Koizumi, S., Bootman, M. D., Babanovic, L. K., Schell, M. J., Berridge, M. J., and Lipp, P. (1999). Characterization of elementary Ca2+ release signals in NGF-differentiated PC12 cells and hippocampal neurons. Neuron.22:125–137. [DOI] [PubMed] [Google Scholar]
  28. Kovalchuk, Y., Eilers, J., Lisman, J., and Konnerth, A. (2000). NMDA receptor-mediated subthreshold Ca2+ signals in spines of hippocampal neurons. J. Neurosci.20:1791–1799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Larkum, M., Watanabe, S., Nakamura, T., Lasser-Ross, N., and Ross, W. N. (2003). Synaptically activated Ca2+ waves in layer 2/3 and layer 5 rat neocortical pyramidal neurons. J. Physiol.549:471–488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lautermilch, N. J., and Spitzer, N. C. (2000). Regulation of calcineurin by growth cone calcium waves controls neurite extension. J. Neurosci.20:315–325 [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lohmann, C., Myhr, K. L., and Wong, R. O. L. (2002). Transmitter-evoked local calcium release stabilizes developing dendrites. Nature418:177–181 [DOI] [PubMed] [Google Scholar]
  32. Magee, J. C. (1999). Voltage gated ion channels in dendrites. In Stuart, G., Spruston, N., and Hausser, M. (ed.), Dendrites, Oxford, New York., pp. 139–160. [Google Scholar]
  33. Magee, J. C., and Johnston, D. (1995). Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science268:301–304. [DOI] [PubMed] [Google Scholar]
  34. Majewska, A., Brown, E., Ross, J., and Yuste, R. (2000). Mechanisms of calcium decay kinetics in hippocampal spines: Role of spine calcium pumps and calcium diffusion through the spine neck in biochemical compartmentalization. J. Neurosci.20:1722–1734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Maravall, M., Mainen, Z. F., Sabatini, B. L., and Svoboda, K. (2000). Estimating intracellular calcium concentrations and buffering without wavelength ratioing. Biophys. J.78:2655–2667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Marchant, J. S., and Parker, I. (2001). Role of elementary Ca2+ puffs in generating repetitive Ca2+ oscillations. EMBO J.20:65–76. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Markram, H., Helm, P. J., and Sakmann, B. (1995). Dendritic calcium transients evoked by single back-propagating action potentials in rat neocortical pyramidal neurons. J. Physiol.485:1–20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Morikawa, H., Khodakhah, K., and Williams, J. T. (2003). Two intracellular pathways mediate metabotropic glutamate receptor-induced Ca2+ mobilization in dopamine neurons. J. Neurosci.23:149–157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Nakamura, T., Barbara, J.-G., Nakamura, K., and Ross, W. N. (1999). Synergistic release of Ca2+ from IP3-sensitive stores evoked by synaptic activation of mGluRs paired with backpropagating action potentials. Neuron24:727–737. [DOI] [PubMed] [Google Scholar]
  40. Nakamura, T., Lasser-Ross, N., Nakamura, K., and Ross, W. N. (2002). Spatial segregation and interaction of calcium signalling mechanisms in rat hippocampal CA1 pyramidal neurons. J. Physiol.543:465–480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Nishiyama, M., Hong, K., Mikoshiba, K., Poo, M. M., and Kato, K. (2000). Calcium stores regulate the polarity and input specificity of synaptic modification. Nature408:584–588. [DOI] [PubMed] [Google Scholar]
  42. Petrozzino, J. J., Pozzo Miller, L. D., and Connor, J. A. (1995). Micromolar Ca2+ transients in dendritic spines of hippocampal pyramidal neurons in brain slice. Neuron.14:1223–1231. [DOI] [PubMed] [Google Scholar]
  43. Poolos, N. P., Migliore, M., and Johnston. D. (2002). Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites. Nature Neurosci.5:767–774. [DOI] [PubMed] [Google Scholar]
  44. Power, J. M., and Sah, P. (2002). Nuclear calcium signaling evoked by cholinergic stimulation in hippocampal CA1 pyramidal neurons. J. Neurosci.22:3454–3462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Pozzo Miller, L. D., Petrozzino, J. J., Golarai, G., and Connor, J. A. (1996). Ca2+ release from intracellular stores induced by afferent stimulation of CA3 pyramidal neurons in hippocampal slices. J. Neurophysiol.76:554–562. [DOI] [PubMed] [Google Scholar]
  46. Regehr, W. G., and Tank, D. W. (1992). Calcium concentration dynamics produced by synaptic activation of CA1 hippocampal pyramidal cells. J. Neurosci.12:4202–4223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Reyes, M., and Stanton, P. K. (1996). Induction of hippocampal long-term depression requires release of Ca2+ from separate presynaptic and postsynaptic intracellular stores. J. Neurosci.16:5951–5960 [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Sabatini, B. L., Oertner, T. G., and Svoboda, K. (2002). The life cycle of Ca2+ ions in dendritic spines. Neuron33: 439–452 [DOI] [PubMed] [Google Scholar]
  49. Sandler, V. M., and Ross, W. N. (1999). Serotonin modulates spike backpropagation and associated [Ca2+]i changes in the apical dendrites of hippocampal CA1 pyramidal neurons. J. Neurophysiol.81:216–224. [DOI] [PubMed] [Google Scholar]
  50. Schiller, J., Helmchen, F., and Sakmann, B. (1995). Spatial profile of dendritic calcium transients evoked by action potentials in rat neocortical pyramidal neurones. J. Physiol.487:583–600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Seymour-Laurent, K. J., and Barish, M. E. (1995). Inositol 1,4,5-trisphosphate and ryanodine receptor distributions and patterns of acetylcholine- and caffeine-induced calcium release in cultured mouse hippocampal neurons. J. Neurosci.15:2592–2608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Sharp, A. H., McPherson, P. S., Dawson, T. M., Aoki, C., Campbell, K. P., and Snyder, S. H. (1993). Differential immunohistochemical localization of inositol 1,4,5-trisphosphate- and ryanodine-sensitive Ca2+ release channels in rat brain. J. Neurosci.13:3051–3063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Shirasaki, T., Harata, N., and Akaike, N. (1994). Metabotropic glutamate response in acutely dissociated hippocampal CA1 pyramidal neurones of the rat. J. Physiol.475:439–453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Spruston, N., Schiller, Y., Stuart, G., and Sakmann, B. (1995). Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science268:297–300. [DOI] [PubMed] [Google Scholar]
  55. Stuart, G., and Hausser, M. (1994). Initiation and spread of sodium action potentials in cerebellar Purkinje cells. Neuron13:703–712. [DOI] [PubMed] [Google Scholar]
  56. Stuart, G., and Sakmann, B. (1994). Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature367:69–72. [DOI] [PubMed] [Google Scholar]
  57. Takechi, H., Eilers, J., and Konnerth, A. (1998). A new class of synaptic response involving calcium release in dendritic spines. Nature396:757–760. [DOI] [PubMed] [Google Scholar]
  58. Tsubokawa, H., and Ross, W. N. (1996). IPSPs modulate spike backpropagation and associated [Ca2+]i changes in the dendrites of hippocampal CA1 pyramidal neurons. J. Neurophysiol.76:2896–2906. [DOI] [PubMed] [Google Scholar]
  59. Tsubokawa, H., and Ross, W. N. (1997). Muscarinic modulation of spike backpropagation in the apical dendrites of hippocampal CA1 pyramidal neurons. J. Neurosci.17:5782–5791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Turner, R. W., Meyers, D. E., Richardson, T. L., and Barker, J. L. (1991). The site for initiation of action potential discharge over the somatodendritic axis of hippocampal CA1 pyramidal cell neurons. J. Neurosci.11:2270–2280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Wang, S. S.-H., Denk, W., and Hausser, M. (2000). Coincidence detection in single dendritic spines mediated by calcium release. Nat. Neurosci.3:1266–1273. [DOI] [PubMed] [Google Scholar]
  62. Yao, Y., and Parker, I. (1992). Potentiation of inositol trisphosphate-induced Ca2+ mobilization in Xenopus oocytes by cytosolic Ca2+. J. Physiol.458:319–338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Yeckel, M. F., Kapur, A., and Johnston, D. (1999). Multiple forms of LTP in hippocampal CA3 neurons use a common postsynaptic mechanism. Nat. Neurosci.2:625–633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Yuste, R., and Denk, W. (1995). Dendritic spines as basic functional units of neuronal integration. Nature375:682–684. [DOI] [PubMed] [Google Scholar]

Articles from Cellular and Molecular Neurobiology are provided here courtesy of Springer

RESOURCES