Skip to main content
Cellular and Molecular Neurobiology logoLink to Cellular and Molecular Neurobiology
. 2005 Nov;25(7):1075–1092. doi: 10.1007/s10571-005-8057-1

K-Aggravated Myotonia Mutations at Residue G1306 Differentially Alter Deactivation Gating of Human Skeletal Muscle Sodium Channels

James R Groome 1, Esther Fujimoto 2,3, Peter C Ruben 2,
PMCID: PMC11529500  PMID: 16392038

Abstract

Fast inactivation and deactivation gating were compared between wild-type human voltage-gated skeletal muscle sodium channel (hNaV1.4) and potassium-aggravated myotonia (PAM) mutations G1306A, G1306E, and G1306V. Cell-attached macropatches were used to compare wild-type and PAM-gating properties in normal extracellular K+ (4 mM), decreased K+ (1 mM), and increased K+ (10 mM). G1306E/A increased the apparent valence of the conductance (g(V)) curve. Compared to hNaV1.4, the steady-state inactivation (h ) curve was depolarized for G1306E/A but hyperpolarized by G1306V, and this mutation increased apparent valence. G1306A/E slowed the rate of current rise towards peak activation. G1306V slowed open-state deactivation, inactivated-state deactivation, and recovery from fast inactivation. G1306A/E abbreviated open-state deactivation at negative commands. These mutants slowed open-state deactivation at more positive commands, at voltages for which fast inactivation might influence tail current decay. G1306E abbreviated recovery delay without affecting recovery rate. Low K+ increased peak current in hNaV1.4 and in G1306V. For G1306E, low K+ increased the rate of entry into fast inactivation, hyperpolarized the g(V) and h curves, and increased recovery delay. Biophysical underpinnings of PAM caused by mutations of G1306 thus vary with the specific mutation, and hyperkalemic exacerbation of effects of mutations at this residue are not direct.

Key Words: gating, activation, inactivation, deactivation, channelopathies, mutations

References

  1. Bouhours, M., Sternberg, D., Davoine, C.-S., Xavier, F., Willer, J. C., Fontaine, B., and Tabti, T. (2004). Functional characterization and cold-sensitivity of T1313A, a new mutation of the skeletal muscle sodium channel causing paramyotonia congenita in humans. J. Physiol.554(3):635–647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cannon, S. C. (1997). From mutation to myotonia in sodium channel disorders. Neuromuscul. Disord.7:241–249. [DOI] [PubMed] [Google Scholar]
  3. Cannon, S. C. (2000). Spectrum of sodium channel disturbances in the nondystrophic myotonias and periodic paralyses. Kidney Int.57:772–779. [DOI] [PubMed] [Google Scholar]
  4. Catterall, W. A. (2000). From ionic currents to molecular mechanisms: The structure and function of voltage-gated sodium channels. Neuron26:13–25. [DOI] [PubMed] [Google Scholar]
  5. Chahine, M., George, A. L. Jr., Zhou, M., Ji, S., Sun, W., Barchi, R. L., and Horn, R. (1994). Sodium channel mutations in paramyotonia congenita uncouple inactivation from activation. Neuron12:281–294. [DOI] [PubMed] [Google Scholar]
  6. Chen, L.-Q., Santarelli, V., Horn, R., and Kallen, R. G. (1996). A unique role for the S4 segment of domain 4 in the inactivation of sodium channels. J. Gen. Physiol. 108:549–556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dice, M. S., Abbruzzese, J. L., Wheeler, J. T., Groome, J. R., Fujimoto, E., and Ruben, P. C. (2004). Temperature-sensitive defects in paramyotonia congenital mutants R1448C and T1313M. Muscle Nerve30:277–288. [DOI] [PubMed] [Google Scholar]
  8. Featherstone, D. E., Fujimoto, E., and Ruben, P. C. (1998). A defect in skeletal muscle sodium channel deactivation exacerbates hyperexcitability in human paramyotonia congenita. J. Physiol. 506(3):627–638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. George, A. L. Jr., Komisarof, J., Kallen, R. G., and Barchi, R. L. (1992). Primary structure of the adult human skeletal muscle voltage-dependent sodium channel. Ann. Neurol.31(2):131–137. [DOI] [PubMed] [Google Scholar]
  10. George, A. L. Jr. (1995). Molecular genetics of ion channel diseases. Kidney Int.48:1180–1190. [DOI] [PubMed] [Google Scholar]
  11. Green, D. S., George, A. L. Jr., and Cannon, S. C. (1998). Human sodium channel gating defects caused by missense mutations in S6 segments associated with myotonia: S804F and V1293I. J. Physiol.510(3):685–694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Groome, J. R., Fujimoto, E., and Ruben, P. C. (2000). The delay in recovery from fast inactivation in skeletal muscle sodium channels is deactivation. Cell. Mol. Neurobiol.20(4):521–527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Groome, J. R., Fujimoto, E., Walter, L., and Ruben, P. C. (2002). Outer and central charged residues in DIVS4 of skeletal muscle sodium channels have differing roles in deactivation. Biophys. J.82:1293–1307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Groome, J. R., Fujimoto, E., and Ruben, P. C. (2003). Negative charges in the DIII-DIV linker of skeletal muscle Na+ channels regulate deactivation gating. J. Physiol.548(1):85–96. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hayward, L. J., Brown, R. H. Jr., and Cannon, S. C. (1996). Inactivation defects caused by myotonia-associated mutations in the sodium channel III–IV linker. J. Gen. Physiol.107:559–576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Heine, R., Pika, U., and Lehmann-Horn, F. (1993). A novel SCN4A mutation causing myotonia aggravated by cold and potassium. Hum. Mol. Genet.2(9):1349–1353. [DOI] [PubMed] [Google Scholar]
  17. Ho, H. N., Hunt, H. D., Morton, R. M., Pullen, J. K., and Pease, L. R. (1989). Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene77:51–59. [DOI] [PubMed] [Google Scholar]
  18. Hoffman, E. P., Lehmann-Horn, F., and Rudel, R. (1995). Overexcited or inactive: Ion channels in muscle disease. Cell80:681–686. [DOI] [PubMed] [Google Scholar]
  19. Horn, R., Ding, S., and Gruber, H. J. (2000). Immobilizing the moving parts of voltage-gated ion channels. J. Gen. Physiol.116:461–475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Isom, L. L., DeJongh, K. S., and Catterall, W. A. (1994). Auxiliary subunits of voltage-gated ion channels. Neuron12:1183–1194. [DOI] [PubMed] [Google Scholar]
  21. Kuo, C.-C., and Bean, B. P. (1994). Na+ channels must deactivate to recover from inactivation. Neuron12:819–829. [DOI] [PubMed] [Google Scholar]
  22. Lehmann-Horn, F., and Jurkat-Rott, K. (1999). Voltage-gated ion channels and hereditary disease. Physiol. Rev.79:1317–1372. [DOI] [PubMed] [Google Scholar]
  23. Lerche, H., Heine, R., Pika, U., George, A. L. Jr., Mitrovic, N., Browatzki, M., Weib, T., Rivet-Bastide, M., Francke, C., Lomonaco, M., Ricker, K., and Lehmann-Horn, F. (1993). Human sodium channel myotonia: Slowed channel inactivation due to substitutions for a glycine within the III–IV linker. J. Physiol.470:13–22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lerche, H., Mitrovic, N., and Lehmann-Horn, F. (1997). Ion channel diseases in neurology. Fortschr. Neurol. Psychiatr.65(11):481–488. [DOI] [PubMed] [Google Scholar]
  25. McClatchey, A. I., McKenna-Vassek, D., Cros, D., Worthen, H. G., Kuncl, R. W., DeSilva, S. M., Cornblath, D. R., Gusella, J. F., and Brown, R. H. Jr. (1992). Novel mutations in families with unusual and variable disorders of the skeletal muscle sodium channel. Nat. Genet.2:148–152. [DOI] [PubMed] [Google Scholar]
  26. Mitrovic, N., George, A. L. Jr., Heine, R., Wagner, S., Pika, U., Hartlaub, U., Zhou, M., Lerche, H., Fahlke, C., and Lehmann-Horn, F. (1994). K+-aggravated myotonia: Destabilization of the inactivated state of the human muscle Na+ channel by the V1589M mutation. J. Physiol.478(3):395–402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mitrovic, N., George, A. L. Jr., Lerche, H., Wagner, S., Fahlke, C., and Lehmann-Horn, F. (1995). Different effects on gating of three myotonia-causing mutations in the inactivation gate of the human muscle sodium channel. J. Physiol.487(1):107–114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Moran, O., Nizzari, M., and Conti, F. (1999). Myopathic mutations affect differently the inactivation of the two gating modes of sodium channels. J. Bioenerg. Biomembr.31(6):591–608. [DOI] [PubMed] [Google Scholar]
  29. Noda, M. S., Shizimu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Minamino, N., Kangawa, K., Matsuo, H., Raftery, M. A., Hirose, T., Inayama, S., Hayashida, H., Miyata, T., and Numa, S. (1989). Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature312:121–127. [DOI] [PubMed] [Google Scholar]
  30. Orrel, R. W., Jurkatt-Rott, K., Lehmann-Horn, F., and Lane, R. J. M. (1998). Familial cramp due to potassium-aggravated myotonia. J. Neurol. Neurosurg. Psychiatry65:569–572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Peter, W., Mitrovic, N., Schiebe, M., Lehmann-Horn, F., and Lerche, H. (1999). A human muscle Na+ channel mutation in the voltage sensor IV/S4 affects channel block by the pentapeptide KIFMK. J. Physiol.518(1):13–22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ptacek, L. J., Gouw, L., Kwiecinski, H., McManis, P., Mendell, J. R., Barohn, R. J., George, A. L. Jr., Barchi, R. L., Robertson, M., and Leppert, M. F. (1993). Sodium channel mutations in paramyotonia congenita and hyperkalemic periodic paralysis. Ann. Neurol.33:300–307. [DOI] [PubMed] [Google Scholar]
  33. Ptacek, L. J., Tawil, R., Griggs, R. C., Meola, G., McManis, P., Barohn, R. J., Mendell, J. R., Harris, C., Spitzer, R., and Santiago, F., (1994). Sodium channel mutations in acetazolamide-responsive myotonia congenital, paramyotonia congenital, and hyperkalemic periodic paralysis, Neurology44(8): 1500–1503. [DOI] [PubMed] [Google Scholar]
  34. Richmond, J. E., VanDeCarr, D., Featherstone, D. E., George, A. L. Jr., and Ruben, P. C. (1997). Defective fast inactivation and deactivation account for sodium channel myotonia in the I1160V mutant. Biophys. J.73:1896–1903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rosenfeld, F., Sloan-Brown, K., and George, A. L. Jr. (1997). A novel muscle sodium channel mutation causes painful congenital myotonia. Ann. Neurol.42:811–814. [DOI] [PubMed] [Google Scholar]
  36. Rudel, R., Ruppersberg, J. P., and Spittelmeister, W. (1989). Abnormalities of the fast sodium current in myotonic dystrophy, recessive generalized myotonia and adynamia episodica. Muscle Nerve12:281–287. [DOI] [PubMed] [Google Scholar]
  37. Stühmer, W., Conti, F., Suzuki, H., Wang, X., Noda, M., Yahagi, N., Kubo, H., and Numa, S. (1989). Structural parts involved in activation and inactivation of the sodium channel. Nature339:597–604. [DOI] [PubMed] [Google Scholar]
  38. Vassilev, P. M., Scheuer, T., and Catterall, W. A. (1988). Identification of an intracellular peptide segment involved in sodium channel inactivation. Science241:1658–1661. [DOI] [PubMed] [Google Scholar]
  39. West, J. W., Patton, D. E., Scheurer, T., Wang, T., Goldin, A. L., and Catterall, W. A. (1992). A cluster of hydrophobic residues required for fast Na+ channel inactivation. Proc. Natl. Acad. Sci. U.S.A.89:10910–10914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Yang, N., and Horn, R. (1995). Evidence for voltage-dependent movement in sodium channels. Neuron15:213–216. [DOI] [PubMed] [Google Scholar]

Articles from Cellular and Molecular Neurobiology are provided here courtesy of Springer

RESOURCES