Skip to main content
Cellular and Molecular Neurobiology logoLink to Cellular and Molecular Neurobiology
. 2005 Jun;25(3-4):465–474. doi: 10.1007/s10571-005-4009-z

Retrieval and the Extinction of Memory

Martín Cammarota 1,2,3, Lia R M Bevilaqua 1,2, Daniela M Barros 2, Mônica R M Vianna 1, Luciana A Izquierdo 2, Jorge H Medina 3, Iván Izquierdo 1,
PMCID: PMC11529503  PMID: 16075375

Abstract

1. Memory is assessed by measuring retrieval which is often elicited by the solely presentation of the conditioned stimulus (CS). However, as known since Pavlov, presentation of the CS alone generates extinction.

2. One-trial avoidance (IA) is a much used conditioned fear paradigm in which the CS is the safe part of a training apparatus, the unconditioned stimulus (US) is a footshock and the conditioned response (CR) is to stay in the safe area. Retrieval of the memory for the step-down version of this task is measured in the absence of the US, as latency to step-down from the safe area (i.e., a platform).

3. Extinction of the IA response is installed at the moment of the first non-reinforced test session, as clearly shown by the fact that many drugs, including PKA, ERK and protein synthesis inhibitors as well as NMDA receptor antagonists, hinder extinction when infused into the hippocampus or the basolateral amygdala at the moment of the first test session but not later.

4. Some, but not all the molecular systems required for extinction are also activated by retrieval, further endorsing the hypothesis that although retrieval is necessary for the generation of extinction this last process constitutes a new learning secondary to the non-reinforced expression of the original trace.

Key Words: memory, retrieval, extinction, reconsolidation, inhibitory avoidance

References

  1. Anderson, M. C., Ochsner, K. N., Kuhl, B., Cooper, J., Robertson, E., Gabrieli, S. W., Clover, G. H., and Gabrieli, J. D. E. (2004). Neural systems underlying the suppression of unwanted memories. Science303:232–235. [DOI] [PubMed] [Google Scholar]
  2. Ardenghi, P., Barros, D., Izquierdo, L. A., Bevilaqua, L., Schroder, N., Quevedo, J., Rodrigues, C., Madruga, M., Medina, J. H., and Izquierdo, I. (1997). Late and prolonged post-training memory modulation in entorhinal and parietal cortex by drugs acting on the cAMP/protein kinase A signalling pathway. Behav. Pharmacol8:745–751. [DOI] [PubMed] [Google Scholar]
  3. Bahar, A., Samuel, A., Hazvi, S., and Dudai, Y. (2003). The amygdalar circuit that acquires taste aversion memory differs from the circuit that extinguishes it. Eur. J. Neurosci. 17:1527–1530. [DOI] [PubMed] [Google Scholar]
  4. Barros, D. M., Izquierdo, L. A., Medina, J. H., and Izquierdo, I. (2002). Bupropion and sertraline enhance retrieval of recent and remote long-term memory in rats. Behav. Pharmacol. 13:215–220. [DOI] [PubMed] [Google Scholar]
  5. Barros, D. M., Izquierdo, L. A., Medina, J. H., and Izquierdo, I. (2003). Pharmacological findings contribute to the understanding of the main physiological mechanisms of memory retrieval. Curr. Drug Target. CNS Neurol. Disord. 2:81–94. [DOI] [PubMed] [Google Scholar]
  6. Barros, D. M., Izquierdo, L. A., Mello e Souza, T., Ardenghi, P., Pereira, P., Medina, J. H., and Izquierdo, I. (2000). Molecular signaling pathways in the cerebral cortex are required for retrieval of one-trial avoidance learning in rats. Behav. Brain Res. 114:183–192. [DOI] [PubMed] [Google Scholar]
  7. Barros, D. M., Mello e Souza, T., De David, T., Choi, H., Aguzzoli, A., Madche, C., Ardenghi, P., Medina, J. H., and Izquierdo, I. (2001). Simultaneous modulation of retrieval by dopaminergic D(1), beta-noradrenergic, serotonergic-1A and cholinergic muscarinic receptors in cortical structures of the rat. Behav. Brain Res. 124:1–7. [DOI] [PubMed] [Google Scholar]
  8. Berman, D. E., and Dudai, Y. (2001). Memory extinction, learning anew, and learning the new: Dissociations in the molecular machinery of learning in cortex. Science291:2417–2419. [DOI] [PubMed] [Google Scholar]
  9. Bernabeu, R., Bevilaqua, L., Ardenghi, P., Bromberg, E., Schmitz, P., Bianchin, M., Izquierdo, I., and Medina, J. H. (1997). Involvement of hippocampal cAMP/cAMP-dependent protein kinase signaling pathways in a late memory consolidation phase of aversively motivated learning in rats. Proc. Natl. Acad. Sci. 94:7041–7046 [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cammarota, M., Bevilaqua, L. R., Ardenghi, P., Paratcha, G., Levi De Stein, M., Izquierdo, I., and Medina, J. H. (2000). Learning-associated activation of nuclear MAPK, CREB and Elk-1, along with Fos production, in the rat hippocampus after a one-trial avoidance learning: Abolition by NMDA receptor blockade. Mol Brain Res76:36–46. [DOI] [PubMed] [Google Scholar]
  11. Cammarota, M., Bevilaqua, L. R., Kerr, D., Medina, J. H., and Izquierdo, I. (2003). Inhibition of mRNA and protein synthesis in the CA1 region of the dorsal hippocampus blocks reinstallment of an extinguished conditioned fear response. J. Neurosci. 23:737–741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Corcoran, K. A., and Maren, S. (2001). Hippocampal inactivation disrupts contextual retrieval of fear memory after extinction. J. Neurosci. 21:1720–1726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. De Almeida, M. A., and Izquierdo, I. (1984). Effect of the intraperitoneal and intracerebroventricular administration of ACTH, epinephrine, or beta-endorphin on retrieval of an inhibitory avoidance task in rats. Behav. Neural. Biol. 40:119–122. [DOI] [PubMed] [Google Scholar]
  14. De Quervain, D. J., Roozendaal, B., Nitsch, R. M., McGaugh, J. L., and Hock, C. (2000). Acute cortisone administration impairs retrieval of long-term declarative memory in humans. Nat. Neurosci. 3:313–314. [DOI] [PubMed] [Google Scholar]
  15. Eldridge, L., Knowlton, B. J., Furmanski, C. S., Bookheimer, S. Y., and Engel, S. A. (2000). Remembering episodes: A selective role for the hippocampus during retrieval. Nat. Neurosci. 3:1149–1152 [DOI] [PubMed] [Google Scholar]
  16. Freud, S. (1962). The Standard Edition of the Complete Psychological Works of Sigmund Freud, Vol. 3, p. 74; vol 10, p.5, vol. 20, p. 87. (London, Hogarth Press).
  17. Igaz, L. M., Vianna, M. R., Medina, J. H., and Izquierdo, I. (2002) Two time periods of hippocampal mRNA synthesis are required for memory consolidation of fear-motivated learning. J. Neurosci. 22:6781–6789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Izquierdo, I., and Medina, J. H. (1997). Memory formation: The sequence of biochemical events in the hippocampus and its connection to activity in other brain structures. Neurobiol. Learn. Mem. 68:285–316. [DOI] [PubMed] [Google Scholar]
  19. Izquierdo, I., Barcik, N. R., and Brioni, J. D. (1989). Pretest beta-endorphin and epinephrine, but not oxotremorine, reverse retrograde interference of a conditioned emotional response in mice. Pharmacol. Biochem. Behav. 33:545–548. [DOI] [PubMed] [Google Scholar]
  20. Izquierdo, I., Barros, D. M., Mello e Souza, T., De Souza, M. M., Izquierdo, L. A., and Medina, J. H. (1998). Mechanisms for memory types differ. Nature393:635–636. [DOI] [PubMed] [Google Scholar]
  21. Izquierdo, I., Souza, D. O., Dias, R. R., Perry, M. L., Carrasco, M. A., Volkmer, N., and Netto, C. A. (1984). Effect of various behavioral training and testing procedures on brain beta-endorphin-like immunoreactivity and the possible role of beta-endorphin in behavioral regulation. Psychoneuroendocrinology9:381–389. [DOI] [PubMed] [Google Scholar]
  22. Izquierdo, I., Wyrwicka, W., Sierra, G., and Segundo, J. P. (1965). Establishment of a trace reflex during natural sleep of cats. Actual Neurophysiol. (Paris) 6:277–296. [PubMed] [Google Scholar]
  23. Izquierdo, L. A., Barros, D. M., Ardenghi, P., Pereira, P., Rodrigues, C., Choi, H., Medina, J. H., and Izquierdo, I. (2000) Different hippocampal molecular requirements for short- and long-term retrieval of one-trial avoidance learning. Behav. Brain Res. 111:93–98. [DOI] [PubMed] [Google Scholar]
  24. Izquierdo, L. A., Barros, D. M., Medina, J. H., and Izquierdo, I. (2003). Exposure to novelty enhances retrieval of very remote memory in rats. Neurobiol. Learn. Mem. 79: 51–56. [DOI] [PubMed] [Google Scholar]
  25. Izquierdo, L. A., Barros, D. M., Vianna, M. R., Coitinho, A., DeDavid e Silva, T., Choi, H., Moletta, B., Medina, J. H., and Izquierdo, I. (2002). Molecular pharmacological dissection of short- and long-term memory. Cell. Mol. Neurobiol. 22:269–287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Izquierdo, L. A., Viola, H., Barros, D. M., Alonso, M., Vianna, M. R., Furman, M., Levi De Stein, M., Szapiro, G., Rodrigues, C., Choi, H., Medina, J. H., and Izquierdo, I. (2001). Novelty enhances retrieval: Molecular mechanisms involved in rat hippocampus. Eur. J. Neurosci. 13:1464–1467 [DOI] [PubMed] [Google Scholar]
  27. Konorski, J. (1948). Conditioned reflexes and Neuron Organisation, London University Press, London. [Google Scholar]
  28. Loftus, E. F., and Palmer, J. C. (1974). Reconstruction of automobile destruction: An example of interaction between language and memory. J. Verbal Learn. & Verbal Behav. 13:585–589. [Google Scholar]
  29. Lu, K. T., Walker, D. L., and Davis, M. (2001). Mitogen-activated protein kinase cascade in the basolateral nucleus of amygdala is involved in extinction of fear-potentiated startle. J. Neurosci. 21:RC162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. McGaugh, J. L. (1966). Time-dependent processes in memory storage. Science153:1351–1358. [DOI] [PubMed] [Google Scholar]
  31. Micheau, J., and Riedel, G. (1999). Protein kinases: Which one is the memory molecule? Cell. Mol. Life Sci. 55:534–548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Milad, M. R., and Quirk, G. J. (2002). Neurons in medial prefrontal cortex signal memory for fear extinction. Nature420:70–74. [DOI] [PubMed] [Google Scholar]
  33. Myers, K. M., and Davis, M. (2002). Behavioral and neural analysis of extinction. Neuron36:567–584. [DOI] [PubMed] [Google Scholar]
  34. Nader, K. (2003) Memory traces unbound. Trends Neurosci. 26:65–72. [DOI] [PubMed] [Google Scholar]
  35. Pavlov, I. P. (1927). Conditioned Reflexes (Oxford, Oxford University Press). [Google Scholar]
  36. Quirk, G. J., and Gehlert, D. R. (2003). Inhibition of the amygdala: Key to pathological states? Ann. NY Acad. Sci. 985:263–272. [DOI] [PubMed] [Google Scholar]
  37. Rescorla, R. A. (2001). Retraining of extinguished Pavlovian stimuli. J. Exp. Psychol. Anim. Behav. Process. 27:115–124. [PubMed] [Google Scholar]
  38. Riedel, G., Platt, B., and Micheau, J. (2003). Glutamate receptor function in learning and memory. Behav. Brain Res. 140:1–47. [DOI] [PubMed] [Google Scholar]
  39. Roozendaal, B. (2002). Stress and memory: Opposing effects of glucocorticoids on memory consolidation and memory retrieval. Neurobiol. Learn. Mem. 78:578–595. [DOI] [PubMed] [Google Scholar]
  40. Rothbaum, B. O., and Schwartz, A. C. (2002). Exposure therapy for posttraumatic stress disorder. Am. J. Psychother. 56:59–75. [DOI] [PubMed] [Google Scholar]
  41. Schacter, D. L., and Dodson, C. S. (2001). Misattribution, false recognition and the sins of memory. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356:1385–1393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Szapiro, G., Galante, J. M., Barros, D. M., Levi De Stein, M., Vianna, M. R., Izquierdo, L. A., Izquierdo, I., and Medina, J. H. (2002). Molecular mechanisms of memory retrieval. Neurochem. Res. 27:1491–1498. [DOI] [PubMed] [Google Scholar]
  43. Szapiro, G., Izquierdo, L. A., Alonso, M., Barros, D., Paratcha, G., Ardenghi, P., Pereira, P., Medina, J. H., and Izquierdo, I. (2000). Participation of hippocampal metabotropic glutamate receptors, protein kinase A and mitogen-activated protein kinases in memory retrieval. Neuroscience99:1–5. [DOI] [PubMed] [Google Scholar]
  44. Szapiro, G., Vianna, M. R., Mcgaugh, J. L., Medina, J. H., and Izquierdo, I. (2003). The role of NMDA glutamate receptors, PKA, MAPK, and CAMKII in the hippocampus in extinction of conditioned fear. Hippocampus13:53–58. [DOI] [PubMed] [Google Scholar]
  45. Taubenfeld, S. M., Wiig, K. A., Bear, M. F., and Alberini, C. M. (1999). A molecular correlate of memory and amnesia in the hippocampus. Nat. Neurosci. 2:309–310. [DOI] [PubMed] [Google Scholar]
  46. Vianna, M. R., Barros, D. M., Silva, T., Choi, H., Madche, C., Rodrigues, C., Medina, J. H., and Izquierdo, I. (2000). Pharmacological demonstration of the differential involvement of protein kinase C isoforms in short- and long-term memory formation and retrieval in rats. Psychopharmacology150:77–84. [DOI] [PubMed] [Google Scholar]
  47. Vianna, M. R., Igaz, L. M., Coitinho, A. S., Medina, J. H., and Izquierdo, I. (2003). Memory extinction requires gene expression in rat hippocampus. Neurobiol. Learn. Mem. 79:199–203. [DOI] [PubMed] [Google Scholar]
  48. Vianna, M. R., Szapiro, G., McGaugh, J. L., Medina, J. H., and Izquierdo, I. (2001). Retrieval of memory for fear-motivated training initiates extinction requiring protein synthesis in the rat hippocampus. Proc. Natl. Acad. Sci. U S A. 98:12251–12254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Walker, D. L., Ressler, K. J., Lu, K. T., and Davis, M. (2002). Facilitation of conditioned fear extinction by systemic administration or intra-amygdala infusions of D-cycloserine as assessed with fear-potentiated startle in rats. J. Neurosci. 22:2343–2351. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cellular and Molecular Neurobiology are provided here courtesy of Springer

RESOURCES