Skip to main content
Cellular and Molecular Neurobiology logoLink to Cellular and Molecular Neurobiology
. 2005 Feb;25(1):201–210. doi: 10.1007/s10571-004-1384-9

Human Cerebral Microvessel Endothelial Cell Culture as a Model System to Study the Blood–Brain Interface in Ischemic/Hypoxic Conditions

Zoltán Nagy 1,5,, Mónika Vastag 1,2, Kraszimir Kolev 3, Zoltán Bori 1, István Karádi 4, Judit Skopál 4
PMCID: PMC11529507  PMID: 15962514

Abstract

1. Cerebral ischemia and reperfusion induce several changes on the endothelial cells at the microcirculatory level.

2. Vasogenic brain edema due to compromised blood–brain barrier, transformation of the endothelial cell surface from an anticoagulant to a procoagulant property are important factors in the pathogenesis of ischemic stroke.

3. Release of prostaglandins, endothelin-1, complement proteins, and matrix metalloproteinase-9 by microvascular endothelial cells are other components in the complex mechanism of brain ischemia/hypoxia.

4. Ultrastructural studies documented the opened paracellular avenues in the course of vasogenic edema in different experimental models.

5. Tight junctions of endothelial cells have been characterized with freeze fracture electron microscopy, and the process of transvesiculation was analyzed using rapid freeze and freeze substitution procedure before electron microscopy studies.

6. In endothelial cell-culture experiments, we used rodent and later human brains.

7. Endothelial cells co-cultured with astroglia resulted in an elaborate tight junctional complex.

8. This co-culture technique becomes the basis of in vitro blood–brain barrier studies. On endothelial cells of human brain origin, different regulatory factors found to be responsible for the complex mechanism of ischemic stroke.

Key words: microvascular endothelium, brain ischemia, blood–brain barrier.

Footnotes

This paper is dedicated to the memory of F. Joó, the good friend and pioneer in endothelial cell research.

References

  1. Bowman, P. D., Ennis, S. R., Rarey, K. E., Betz, A. L., and Goldstein, G. W. (1983). Brain microvessel endothelial cells in tissue culture. A model for study of blood–brain barrier permeability. Ann. Neurol.14:396–402. [DOI] [PubMed] [Google Scholar]
  2. Brightman, M. W., Klatzo, I., Olsson, Y., and Reese, T. S. (1970). The blood–brain barrier to proteins under normal and pathological conditions. J. Neurol. Sci.10:215–239. [DOI] [PubMed] [Google Scholar]
  3. Etingin, O. L., Hajjar, D. P., Hajjar, K. A, Harpel, P. C., and Nachman, R. L. (1991). Lipoprotein(a) regulates plasminogen activator inhibitor-1 expression in endothelial cells. J. Biol. Chem.266:2459–2465. [PubMed] [Google Scholar]
  4. Joó, F., and Karnushina, I. (1973). A procedure for the isolation of capillaries from rat brain. Cytobios8:41–48. [PubMed] [Google Scholar]
  5. Jürgens, G., Taddei-Peters, W. C., Költringer, P., Petek, W., Chen, Q., Greilberger, J., Macomber, P. F., Butman, B. T., Stead, A. G., and Ransom, J. H. (1995). Lipoprotein(a) serum concentration and apolipoprotein(a) phenotype correlate with severity and presence of ischemic cerebrovascular disease. Stroke26:1841–1848. [DOI] [PubMed] [Google Scholar]
  6. Kövecs, K., Komjáti, K., Marton, T., Skopál, J., Sándor, P., and Nagy, Z. (2001). Hypercapnia stimulates prostaglandin E2, but not prostaglandin I2 release in endothelial cells cultured from microvessels of human fetal brain. Brain Res. Bul.54:387–389. [DOI] [PubMed] [Google Scholar]
  7. Kolev, K., Skopál, J., Simon, L., Csonka, É., Machovich, R., and Nagy, Z. (2003). Matrix metalloproteinase-9 expression in post-hypoxic human brain capillary endothelial cells: H2O2 as a trigger and NF-κB as a signal transducer. Thromb. Haemost.90:528–537. [DOI] [PubMed] [Google Scholar]
  8. Kronenberg, F., Kronenberg, M. F., Kiechl, S., Trenkwalder, E., Santer, P., Oberhollenzer, F., Egger, G., Utermann, G., and Willeit, J. (1999). Role of lipoprotein(a) and apolipoprotein(a) phenotype in atherogenesis. Circulation100:1154–1160. [DOI] [PubMed] [Google Scholar]
  9. Nagy, Z. (1990) Blood–brain barrier and the cerebral endothelium. In Johansson, B. B., Owman, C., and Widner, H. (eds.), Pathophysiology of the Blood–Brain Barrier, Elsevier Science Publisher, Amsterdam, pp. 11–29. [Google Scholar]
  10. Nagy, Z., Goehlert, V. G., Wolfe, L. S., and Hüttner, I. (1985). Ca2+ depletion-induced disconnection of tight junctions in isolated rat brain microvessels. Neuropathol (Berl).68:48–52. [DOI] [PubMed] [Google Scholar]
  11. Nagy, Z., Kolev, K., Csonka, É., Pék, M., and Machovich, R. (1995). Contraction of human brain endothelial cells induced by thrombogenic and fibrinolytic factors. An in vitro cell culture model. Stroke26:265–270. [DOI] [PubMed] [Google Scholar]
  12. Nagy, Z., Kolev, K., Csonka, É., Vastag, M., and Machovich, R. (1998). Perturbation of the integrity of the blood–brain barrier by fibbrinolytic enzymes. Blood Coagul. Fibrinolysis9:471–478. [DOI] [PubMed] [Google Scholar]
  13. Nagy, Z., and Martinez, K. (1991). Astrocytic induction of endothelial tight junctions. In Abbott, N. J. (ed.), Glial-Neuronal Interaction,Ann. NY Acad. Sci.633:395–404. [DOI] [PubMed]
  14. Nagy, Z., Mathieson, G., and Hüttner, I. (1979a). Opening of tight junctions in cerebral endothelium. II. Effect of pressure pulse induced acute arterial hypertension. J. Comp. Neurol.185:579–586 [DOI] [PubMed] [Google Scholar]
  15. Nagy, Z., Pappius, H. M., Mathieson, G., and Hüttner, I. (1979b). Opening of tight junction in cerebral endothelium. I. Effect of hyperosmolar mannitol infused through the internal carotid artery. J. Comp. Neurol.185:569–578 [DOI] [PubMed] [Google Scholar]
  16. Nagy, Z., Peters, H., and Hüttner, I. (1983). Charge-related alteration of the cerebral endothelium. Lab. Invest.49:662–671. [PubMed] [Google Scholar]
  17. Nagy, Z., Peters, H., and Hüttner, I.(1984). Fracture faces of cell junctions in cerebral endothelium during normal and hyperosmotic conditions. Lab. Invest.50:313–322. [PubMed] [Google Scholar]
  18. Nagy, Z., Pettigrew, K. D., Meiselman, S., and Brightman, M. W. (1988). Cerebral vessels cryofixed after hyperosmosis or cold injury in normothermic and hypothermic frogs. Brain440:315–327. [DOI] [PubMed] [Google Scholar]
  19. Nagy, Z., Vastag, M., Skopál, J., Kolev, K., Machovich, R., Krámer, J., Karádi, I., and Tóth, M. (1996). Human brain microvessel endothelial cell culture as a model system to study vascular factors of ischemic brain. Keio J. Med.45:200–206. [DOI] [PubMed] [Google Scholar]
  20. Reese, T. S., and Karnovsky, M. H. (1967). Fine structural localization of a blood–brain barrier to exogenous peroxidase. J. Cell Biol.34:207–217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Skopál, J., Karádi, I., Turbucz, P.,Vastag, M., Bori, Z., Pék, M., De Chatel, R., Nagy, Z., and Tóth, M. (1998). Regulation of endothelin release from human brain microvessel cells. J. Cardiovasc. Pharmacol. Suppl. 1: S370–S372. [DOI] [PubMed] [Google Scholar]
  22. Stewart, P. A., and Wiley, M. J. (1981). Developing nervous tissue induces formation of blood–brain barrier characteristics invading endothelial cells: A study using quail-chick transplantation chimeras. Dev. Biol.84:183–192. [DOI] [PubMed] [Google Scholar]
  23. Tao Cheng, J. H., Nagy, Z., and Brightman, M. W. (1987). Tight junctions of brain endothelium in vitro are enhanced by astroglia. J. Neurosci.7:3293–3299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tao Cheng, J. H., Nagy, Z., and Brightman, M. W. (1991). Astrocytic orthogonal arrays of intramembranous particle assemblies are modulated by brain endothelial cells in vitro. J. Neurocytol.19:143–153. [DOI] [PubMed] [Google Scholar]
  25. Vastag, M., and Nagy, Z. (1997). Methods of isolation and culture of human brain microvessel endothelium. In De Boer, A. B. G., Sutanto, W. (eds.), Drug Transport Across the Blood Brain Barrier: In Vitro and In Vivo Techniques. Harwood Academic Publisher GmbH, The Netherlands, Amsterdam, pp. 109–113. [Google Scholar]
  26. Vastag, M., Skopál, J., Krámer, J., Kolev, K., Vokó, Z., Csonka, É., Machovich, R., and Nagy, Z. (1998). Endothelial cells cultured from human brain microvessels produce complement proteins factor H, Factor B, C1 inhibitor and C4. Immunobiology199:1–9. [DOI] [PubMed] [Google Scholar]
  27. Vastag, M., Skopál, J., Vokó, Z., Csonka, É., and Nagy, Z. (1999). Expression of membrane-bound and soluble cell adhesion molecules by human brain microvessel endothelial cells. Microvasc. Res.57:52–60. [DOI] [PubMed] [Google Scholar]

Articles from Cellular and Molecular Neurobiology are provided here courtesy of Springer

RESOURCES