Abstract
Metallothioneins (MTs) are small metal-binding proteins. The genes that encode MT isoforms I and II are also induced by metal at transcription level. Commonly expressed in the central nervous system (CNS) their putative function is protection against reactive oxygen species (ROS), however their role may not be restricted to this sole purpose. The physiological function of MTs in the peripheral nervous system (PNS) requires further investigation.
Examination of phrenic nerve cross-sections from MT-I and MT-II double knockout mice (MT-I, II KO) showed a significant reduction (P = 0.0032) in the mean myelinated axons calibre compared to 129/Sv wild type (Wt) counterparts.
Analysis of the Gaussian spectra specifically attributes this atrophy to the large myelinated class (≥ 4 μm) of axon considered selectively vulnerable in motor neuron disease (MND). Supporting the results, these axons also showed increased irregularity in shape.
In conclusion, MTs directly or indirectly influence the radial equilibrium of large myelinated motor axons.
Keywords: Metallothionein, phrenic nerve, motor neuron, axon, atrophy, motor neuron disease, oxidative stress
References
- Aschner, M., Conklin, D. R., Yao, C. P., Allen, J. W., and Tan, K. H. (1998). Induction of astrocyte metallothioneins by zinc confers resistance against the acute cytotoxic effects of methylmercury on cell swelling, Na (uptake, and K) release. Brain Res. 813:254–261. [DOI] [PubMed] [Google Scholar]
- Beyersmann, D., and Haase, H. (2001). Functions of zinc in signalling, proliferation and differentiation of mammalian cells. Biometals14:331–341. [DOI] [PubMed] [Google Scholar]
- Carrasco, J., Giralt, M., Molinero, A., Penkowa, M., Moos, T., and Hidalgo, J. (1999). Metallothionein (MT)-III: Generation of polyclonal antibodies, comparison with MT-I + II in the freeze lesioned rat brain and in a bioassay with astrocytes, and analysis of Alzheimer’s brains. J. Neurotrauma. 16:1115–1129. [DOI] [PubMed] [Google Scholar]
- Ceballos, D., Lago, N., Verdu, E., Penkowa, J., Carrasco, X., Navarro, R. D., Palmiter, R. D., and Hidalgo, J. (2003). Role of metallothionein in peripheral nerve function and regeneration. Cell. Mol. Life. Sci. 60:1209–1216. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chung, R. S., and West, A. K. (2004). A role for extracellular metallothioneins in CNS injury and repair. Neurosci. 123:595–599. [DOI] [PubMed] [Google Scholar]
- Chung, R. S., Vickers, C., Meng, I. C., and West, A. K. (2003). Metallothionein-IIA promotes initial neurite elongation and postinjury reactive neurite growth and facilitates healing after focal cortical brain injury. J. Neurosci. 23:3336–3342. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crow, J. P., Sampson, J. B., Zhuang, Y., Thompson, J. A., and Beckman, J. S. (1997). Decreased zinc affinity of amyotrophic lateral sclerosis-associated superoxide dismutase mutants leads to enhanced catalysis of tyrosine nitration by peroxynitrite. J. Neurochem. 69:1936–1944. [DOI] [PubMed] [Google Scholar]
- Elder, G. A., V. L, F. J., Margita, A., and Lazzarinai, R. A. (1999). Age-related atrophy of motor axons in mice deficient in the mid-sized neurofilament subuint. J. Cell. Biol. 146:181–192. [DOI] [PMC free article] [PubMed] [Google Scholar]
- El Refaey, H., Ebadi, M., Kuszynski, C. A., Sweeney, J., Hamada, F. M., and Hamed, A. (1997). Identification of metallothionein receptors in human astrocytes. Neurosci. Lett. 231:131–134. [DOI] [PubMed] [Google Scholar]
- Gong, Y. H., and Elliott, J. L. (2000). Metallothionein expression is altered in a transgenic murine model of familial amyotrophic lateral sclerosis. Exp. Neurol. 162:27–36. [DOI] [PubMed] [Google Scholar]
- Griffin, J., Parhad, I., Gold, B., Price, D., Hoffman, P., and Fahnestock, K. (1985). Axonal transport of neurofilament proteins in IDPN neurotoxicity. Neurotoxicology6:43–54. [PubMed] [Google Scholar]
- Hidalgo, J., Aschner, M., Zatta, P., and Vasak, M. (2001). Roles of the metallothionein family of proteins in the central nervous system. Brain Res. Bull. 55:133–145. [DOI] [PubMed] [Google Scholar]
- Jacomy, H., Zhu, Q., Couillard-Despres, S., Beaulieu, J., and Julien, J. (1999). Disruption of type IV intermediate filament network in mice lacking the neurofilament medium and heavy subunits. J. Neurochem. 73:972–984. [DOI] [PubMed] [Google Scholar]
- Julien, J.-P. (1999). Neurofilament functions in health and disease. Curr. Opin. Neurobiol. 9:554–560. [DOI] [PubMed] [Google Scholar]
- Køhler., L. B., Berezin, V., Bock, E., and Penkowa, M. (2003). The role of metallothionein II in neuronal differentiation and survival. Brain Res. 992:128–136. [DOI] [PubMed] [Google Scholar]
- Kumari, M. V. R., Hiramatsu, M., and Ebadi, M. (1998). Free radical scavenging actions of metallothionein isoforms I and II. Free. Rad. Res. 29:93–101. [DOI] [PubMed] [Google Scholar]
- Lee, V. M.-Y., Otvos, L., Carden, M., Hollosi, M., Dietzschold, B., and Lazzarini, R. (1988). Identification of the major multiphosphorylation site in mammalian neurofilaments. Proc. Natl. Acad. Sci. USA. 85:1998–2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Margoshes, M., and Vallee, B. L. (1957). A cadmium protein from equine kidney cortex. J. Am. Chem. Soc. 79:4813–4814. [Google Scholar]
- Masters, B. A., Kelly, E. J., Quaife, C. J., Brinster, R. L., and Palmiter, R. D. (1994). Targeted disruption of metallothionein I and II genes increases sensitivity to cadmium. Proc. Natl. Acad. Sci. USA. 91:584–588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mulligan, L., Balin, B., Lee, V. M.-Y., and Ip, W. (1991). Antibody labelling of bovine neurofilaments: Implications on the structure of neurofilament sidearms. J. Struct. Biol. 106:145–160. [DOI] [PubMed] [Google Scholar]
- Muma, N. A., and Cork, L. C. (1993). Alterations in neurofilament mRNA in hereditary canine spinal muscular atrophy. Lab. Invest. 69:436–442. [PubMed] [Google Scholar]
- Nishimura, N., Nishimura, H., Ghaffar, A., and Tohyama, C. (1992). Localization of metallothionein in the brain of rat and mouse. J. Histochem. Cytochem. 40:309–315. [DOI] [PubMed] [Google Scholar]
- Pamphlett, R., and Png, F. Y. (1998). Shrinkage of motor axons following systemic exposure to inorganic mercury. J. Neuropathol. Exp. Neurol. 57:360–366. [DOI] [PubMed] [Google Scholar]
- Palmiter, R. D. (1998). The elusive function of metallothioneins. Proc. Natl. Acad. Sci. USA. 95:8428–8430. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Penkowa,M., Giralt,M., Camats, J., and Hidalgo, J. (2002).Metallothionein 1 + 2 protect the CNS during neuroglial degeneration induced by 6-aminonicotinamide.J. Comp. Neurol. 444:174–189. [DOI] [PubMed] [Google Scholar]
- Puttaparthi, K., Gitomer, W. L., Krishnan, U., Son, M., Rajendran, B., and Elliott, J. L. (2002). Disease progression in a transgenic model of familial amyotrophic lateral sclerosis is dependent on both neuronal and non-neuronal zinc binding proteins. J. Neurosci. 22:8790–8796. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sato, M., and Bremner, I. (1993). Oxygen free radicals and metallothionein. Free Rad. Biol. Med. 14:325–337. [DOI] [PubMed] [Google Scholar]
- Sillevis, Smitt, P. A., Blaauwgeers, H. G., Troost, D., and de Jong, J. M. (1992). Metallothionein immunoreactivity is increased in the spinal cord of patients with amyotrophic lateral sclerosis. Neurosci. Lett. 144:107–110. [DOI] [PubMed] [Google Scholar]
- Stankovic, R. K., Lee, V., Kekic, M., and Harper, C. (2003). The expression and significance of metallothioneins in murine organs and tissues following mercury vapour exposure. Toxicol. Pathol. 31:514–523. [DOI] [PubMed] [Google Scholar]
- Young, J. K., Garvey, J. S., Huang, P. C.(1991). Glial immunoreactivity for metallothionein in the rat brain. Glia4:602–610. [DOI] [PubMed] [Google Scholar]
- Zhu, Q., Couillard-Despres, S., and Julien, J. P. (1997). Delayed maturation of regenerating myelinating axons in mice lacking neurofilaments. Exp. Neurol. 148:299–316. [DOI] [PubMed] [Google Scholar]