Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1985 Dec 15;232(3):833–840. doi: 10.1042/bj2320833

Inhibition of foetal pulmonary choline-phosphate cytidylyltransferase under conditions favouring protein phosphorylation.

K Radika, F Possmayer
PMCID: PMC1152958  PMID: 3004422

Abstract

Choline-phosphate cytidylyltransferase (EC 2.7.7.15) activity from 25- and 29-day-foetal rabbit lungs was inhibited in both the cytosolic and the microsomal fractions by preincubation with MgATP. The inhibition of the cytosolic enzyme was greater when measured with added phosphatidylglycerol (PG) than without (78-89% versus 50-55%), whereas the inhibition of the microsomal enzyme did not exhibit this distinction (66-72% versus 60-70%). When preincubated with the buffer alone, the cytosolic enzyme was activated to a greater extent by added PG than was the microsomal enzyme (13-14-fold versus 2-3-fold). However, after preincubation with MgATP, the cytosolic enzyme was activated to a smaller extent by added PG (3-6-fold). The inhibition of the enzyme by MgATP required a preincubation and was absent when ADP or AMP was substituted for ATP. Moreover, ATP analogues such as adenosine 5'-[beta, gamma-methylene]triphosphate and adenosine 5'-[gamma-thio]triphosphate also failed to inhibit the enzyme when substituted for ATP in the preincubation. The inhibition by MgATP was not affected by including cyclic AMP in the preincubation, but Ca2+ ions alone or plus diacylglycerol in the preincubation increased the inhibition slightly. The inhibition was abolished by including an inhibitor of cyclic-AMP-dependent protein kinase in the preincubation. These observations, taken collectively, point to the inhibition of foetal pulmonary cytidylyltransferase through the phosphorylation of a protein and suggest that this key enzyme in lung surfactant production may be regulated through this mechanism.

Full text

PDF
833

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballard P. L., Benson B. J., Brehier A. Glucocorticoid effects in the fetal lung. Am Rev Respir Dis. 1977 Jun;115(6 Pt 2):29–36. doi: 10.1164/arrd.1977.115.S.29. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Choy P. C., Lim P. H., Vance D. E. Purification and characterization of CTP: cholinephosphate cytidylytransferase from rat liver cytosol. J Biol Chem. 1977 Nov 10;252(21):7673–7677. [PubMed] [Google Scholar]
  4. Choy P. C., Vance D. E. Lipid requirements for activation of CTP: phosphocholine cytidylyltransferase from rat liver. J Biol Chem. 1978 Jul 25;253(14):5163–5167. [PubMed] [Google Scholar]
  5. Chu A. J., Rooney S. A. Stimulation of cholinephosphate cytidylyltransferase activity by estrogen in fetal rabbit lung is mediated by phospholipids. Biochim Biophys Acta. 1985 May 17;834(3):346–356. doi: 10.1016/0005-2760(85)90008-6. [DOI] [PubMed] [Google Scholar]
  6. Cohen P. The role of protein phosphorylation in neural and hormonal control of cellular activity. Nature. 1982 Apr 15;296(5858):613–620. doi: 10.1038/296613a0. [DOI] [PubMed] [Google Scholar]
  7. Feldman D. A., Dietrich J. W., Weinhold P. A. Comparison of the phospholipid requirements and molecular form of CTP : phosphocholine cytidylyltransferase from rat lung, kidney, brain and liver. Biochim Biophys Acta. 1980 Dec 5;620(3):603–611. doi: 10.1016/0005-2760(80)90152-6. [DOI] [PubMed] [Google Scholar]
  8. Fiscus W. G., Schneider W. C. The role of phospholipids in stimulating phosphorylcholine cytidyltransferase activity. J Biol Chem. 1966 Jul 25;241(14):3324–3330. [PubMed] [Google Scholar]
  9. Goerke J. Lung surfactant. Biochim Biophys Acta. 1974 Dec 16;344(3-4):241–261. doi: 10.1016/0304-4157(74)90009-4. [DOI] [PubMed] [Google Scholar]
  10. Gratecos D., Fischer E. H. Adenosine 5'-O(3-thiotriphosphate) in the control of phosphorylase activity. Biochem Biophys Res Commun. 1974 Jun 18;58(4):960–967. doi: 10.1016/s0006-291x(74)80237-8. [DOI] [PubMed] [Google Scholar]
  11. Gross I., Rooney S. A. Aminophylline stimulates the incorporation of choline into phospholipid in explants of fetal rat lung in organ culture. Biochim Biophys Acta. 1977 Aug 24;488(2):263–269. doi: 10.1016/0005-2760(77)90183-7. [DOI] [PubMed] [Google Scholar]
  12. Haagsman H. P., de Haas C. G., Geelen M. J., van Golde L. M. Regulation of triacylglycerol synthesis in the liver. Modulation of diacylglycerol acyltransferase activity in vitro. J Biol Chem. 1982 Sep 25;257(18):10593–10598. [PubMed] [Google Scholar]
  13. Kerrick W. G., Hoar P. E., Cassidy P. S., Bolles L., Malencik D. A. Calcium-regulatory mechanisms. Functional classification using skinned fibers. J Gen Physiol. 1981 Feb;77(2):177–190. doi: 10.1085/jgp.77.2.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Khosla S. S., Gobran L. I., Rooney S. A. Stimulation of phosphatidylcholine synthesis by 17 beta-estradiol in fetal rabbit lung. Biochim Biophys Acta. 1980 Feb 22;617(2):282–290. doi: 10.1016/0005-2760(80)90171-x. [DOI] [PubMed] [Google Scholar]
  15. Maniscalco W. M., Wilson C. M., Gross I., Gobran L., Rooney S. A., Warshaw J. B. Development of glycogen and phospholipid metabolism in fetal and newborn rat lung. Biochim Biophys Acta. 1978 Sep 28;530(3):333–346. doi: 10.1016/0005-2760(78)90153-4. [DOI] [PubMed] [Google Scholar]
  16. Niles R. M., Makarski J. S. Regulation of phosphatidylcholine metabolism by cyclic AMP in a model alveolar type 2 cell line. J Biol Chem. 1979 Jun 10;254(11):4324–4326. [PubMed] [Google Scholar]
  17. Pelech S. L., Pritchard P. H., Vance D. E. Prolonged effects of cyclic AMP analogues of phosphatidylcholine biosynthesis in cultured rat hepatocytes. Biochim Biophys Acta. 1982 Nov 12;713(2):260–269. doi: 10.1016/0005-2760(82)90243-0. [DOI] [PubMed] [Google Scholar]
  18. Pelech S. L., Vance D. E. Regulation of rat liver cytosolic CTP: phosphocholine cytidylyltransferase by phosphorylation and dephosphorylation. J Biol Chem. 1982 Dec 10;257(23):14198–14202. [PubMed] [Google Scholar]
  19. Possmayer F., Casola P. G., Chan F., MacDonald P., Ormseth M. A., Wong T., Harding P. G., Tokmakjian S. Hormonal induction of pulmonary maturation in the rabbit fetus: effects of maternal treatment with estradiol-17 beta on th endogenous levels of cholinephosphate, CDP-choline and phosphatidylcholine. Biochim Biophys Acta. 1981 Apr 23;664(1):10–21. doi: 10.1016/0005-2760(81)90024-2. [DOI] [PubMed] [Google Scholar]
  20. Post M., Batenburg J. J., Schuurmans E. A., Van Golde L. M. The rate-limiting step in the biosynthesis of phosphatidylcholine by alveolar type II cells from adult rat lung. Biochim Biophys Acta. 1982 Aug 18;712(2):390–394. doi: 10.1016/0005-2760(82)90357-5. [DOI] [PubMed] [Google Scholar]
  21. Pritchard P. H., Vance D. E. Choline metabolism and phosphatidylcholine biosynthesis in cultured rat hepatocytes. Biochem J. 1981 Apr 15;196(1):261–267. doi: 10.1042/bj1960261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Resink T. J., Hemmings B. A., Tung H. Y., Cohen P. Characterisation of a reconstituted Mg-ATP-dependent protein phosphatase. Eur J Biochem. 1983 Jun 15;133(2):455–461. doi: 10.1111/j.1432-1033.1983.tb07485.x. [DOI] [PubMed] [Google Scholar]
  23. Rooney S. A., Gobran L. I., Marino P. A., Maniscalco W. M., Gross I. Effects of betamethasone on phospholipid content, composition and biosynthesis in the fetal rabbit lung. Biochim Biophys Acta. 1979 Jan 29;572(1):64–76. doi: 10.1016/0005-2760(79)90200-5. [DOI] [PubMed] [Google Scholar]
  24. Spector T. Refinement of the coomassie blue method of protein quantitation. A simple and linear spectrophotometric assay for less than or equal to 0.5 to 50 microgram of protein. Anal Biochem. 1978 May;86(1):142–146. doi: 10.1016/0003-2697(78)90327-5. [DOI] [PubMed] [Google Scholar]
  25. Tokmakjian S., Possmayer F. Pool sizes of the precursors for phosphatidylcholine synthesis in developing rat lung. Biochim Biophys Acta. 1981 Oct 23;666(1):176–180. doi: 10.1016/0005-2760(81)90103-x. [DOI] [PubMed] [Google Scholar]
  26. Vance D. E., Trip E. M., Paddon H. B. Poliovirus increases phosphatidylcholine biosynthesis in HeLa cells by stimulation of the rate-limiting reaction catalyzed by CTP: phosphocholine cytidylyltransferase. J Biol Chem. 1980 Feb 10;255(3):1064–1069. [PubMed] [Google Scholar]
  27. Weinhold P. A., Feldman D. A., Quade M. M., Miller J. C., Brooks R. L. Evidence for a regulatory role of CTP : choline phosphate cytidylyltransferase in the synthesis of phosphatidylcholine in fetal lung following premature birth. Biochim Biophys Acta. 1981 Jul 24;665(1):134–144. doi: 10.1016/0005-2760(81)90241-1. [DOI] [PubMed] [Google Scholar]
  28. Yount R. G., Babcock D., Ballantyne W., Ojala D. Adenylyl imidodiphosphate, an adenosine triphosphate analog containing a P--N--P linkage. Biochemistry. 1971 Jun 22;10(13):2484–2489. doi: 10.1021/bi00789a009. [DOI] [PubMed] [Google Scholar]
  29. Yount R. G., Ojala D., Babcock D. Interaction of P--N--P and P--C--P analogs of adenosine triphosphate with heavy meromyosin, myosin, and actomyosin. Biochemistry. 1971 Jun 22;10(13):2490–2496. doi: 10.1021/bi00789a010. [DOI] [PubMed] [Google Scholar]
  30. Zelinski T. A., Savard J. D., Man R. Y., Choy P. C. Phosphatidylcholine biosynthesis in isolated hamster heart. J Biol Chem. 1980 Dec 10;255(23):11423–11428. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES