Abstract
Antibodies to four rat liver forms of cytochrome P-450, two phenobarbital-inducible (PB1 and PB2) and two 3-methylcholanthrene-inducible (MC1 and MC2) proteins, have been used to make a structural and functional comparison of rat and human cytochromes P-450. Proteins from both species were identified on Western blots by their reaction with these antibodies. In the human liver preparations, structurally related proteins to PB1 and to PB2 were identified in all the samples tested with apparent Mr values of 51 800 and 54 800 for PB1 and 53 600 and 57 200 for PB2. Considerable variation in the content of the lower-Mr proteins was measured between samples and, as with the rat enzymes, samples which reacted well with anti-PB1 also reacted with anti-PB2, indicating that these proteins are regulated at least to some degree, co-ordinately. The apparent Mr values of the major human proteins identified with anti-MC1 and anti-MC2 were 54 400 and 57 000 respectively. Only six (of 31) human samples contained significant amounts of these proteins. The same six samples which reacted with anti-MC1 also reacted with anti-MC2, again indicating co-ordinate regulation of these two proteins. Antibody inhibition of microsomal 7-ethoxycoumarin and 7-ethoxyresorufin metabolism demonstrated a degree of conservation of substrate specificity related to specific P-450 isoenzymes between the species. However, the contributions of the different P-450 isoenzymes to the human microsomal activity were not always related to the rat enzyme with the highest activity towards these substrates.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Atlas S. A., Boobis A. R., Felton J. S., Thorgeirsson S. S., Nebert D. W. Ontogenetic expression of polycyclic aromatic compound-inducible monooxygenase activities and forms of cytochrome P-450 in rabbit. Evidence for temporal control and organ specificity of two genetic regulatory systems. J Biol Chem. 1977 Jul 10;252(13):4712–4721. [PubMed] [Google Scholar]
- Ayesh R., Idle J. R., Ritchie J. C., Crothers M. J., Hetzel M. R. Metabolic oxidation phenotypes as markers for susceptibility to lung cancer. Nature. 1984 Nov 8;312(5990):169–170. doi: 10.1038/312169a0. [DOI] [PubMed] [Google Scholar]
- Badaracco G., Capucci L., Plevani P., Chang L. M. Polypeptide structure of DNA polymerase I from Saccharomyces cerevisiae. J Biol Chem. 1983 Sep 10;258(17):10720–10726. [PubMed] [Google Scholar]
- Boobis A. R., Davies D. S. Human cytochromes P-450. Xenobiotica. 1984 Jan-Feb;14(1-2):151–185. doi: 10.3109/00498258409151404. [DOI] [PubMed] [Google Scholar]
- Bresnick E., Brosseau M., Levin W., Reik L., Ryan D. E., Thomas P. E. Administration of 3-methylcholanthrene to rats increases the specific hybridizable mRNA coding for cytochrome P-450c. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4083–4087. doi: 10.1073/pnas.78.7.4083. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burke M. D., Mayer R. T. Inherent specificities of purified cytochromes P-450 and P-448 toward biphenyl hydroxylation and ethoxyresorufin deethylation. Drug Metab Dispos. 1975 Jul-Aug;3(4):245–253. [PubMed] [Google Scholar]
- Dubois R. N., Waterman M. R. Effect of phenobarbital administration to rats on the level of the in vitro synthesis of cytochrome P-450 directed by total rat liver RNA. Biochem Biophys Res Commun. 1979 Sep 12;90(1):150–157. doi: 10.1016/0006-291x(79)91602-4. [DOI] [PubMed] [Google Scholar]
- Fujino T., Park S. S., West D., Gelboin H. V. Phenotyping of cytochromes P-450 in human tissues with monoclonal antibodies. Proc Natl Acad Sci U S A. 1982 Jun;79(12):3682–3686. doi: 10.1073/pnas.79.12.3682. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujita V. S., Black S. D., Tarr G. E., Koop D. R., Coon M. J. On the amino acid sequence of cytochrome P-450 isozyme 4 from rabbit liver microsomes. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4260–4264. doi: 10.1073/pnas.81.14.4260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guengerich F. P., Dannan G. A., Wright S. T., Martin M. V., Kaminsky L. S. Purification and characterization of liver microsomal cytochromes p-450: electrophoretic, spectral, catalytic, and immunochemical properties and inducibility of eight isozymes isolated from rats treated with phenobarbital or beta-naphthoflavone. Biochemistry. 1982 Nov 9;21(23):6019–6030. doi: 10.1021/bi00266a045. [DOI] [PubMed] [Google Scholar]
- Jaiswal A. K., Gonzalez F. J., Nebert D. W. Human dioxin-inducible cytochrome P1-450: complementary DNA and amino acid sequence. Science. 1985 Apr 5;228(4695):80–83. doi: 10.1126/science.3838385. [DOI] [PubMed] [Google Scholar]
- Johnson E. F., Schwab G. E. Constitutive forms of rabbit-liver microsomal cytochrome P-450: enzymatic diversity, polymorphism and allosteric regulation. Xenobiotica. 1984 Jan-Feb;14(1-2):3–18. doi: 10.3109/00498258409151395. [DOI] [PubMed] [Google Scholar]
- Kato R., Kamataki T. Cytochrome P-450 as a determinant of sex difference of drug metabolism in the rat. Xenobiotica. 1982 Nov;12(11):787–800. doi: 10.3109/00498258209038950. [DOI] [PubMed] [Google Scholar]
- Kawajiri K., Gotoh O., Sogawa K., Tagashira Y., Muramatsu M., Fujii-Kuriyama Y. Coding nucleotide sequence of 3-methylcholanthrene-inducible cytochrome P-450d cDNA from rat liver. Proc Natl Acad Sci U S A. 1984 Mar;81(6):1649–1653. doi: 10.1073/pnas.81.6.1649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kumar A., Padmanaban G. Studies on the synthesis of cytochrome P-450 and cytochrome P-448 in rat liver. J Biol Chem. 1980 Jan 25;255(2):522–525. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Matocha M. F., Waterman M. R. Discriminatory processing of the precursor forms of cytochrome P-450scc and adrenodoxin by adrenocortical and heart mitochondria. J Biol Chem. 1984 Jul 10;259(13):8672–8678. [PubMed] [Google Scholar]
- Nebert D. W., Jensen N. M. The Ah locus: genetic regulation of the metabolism of carcinogens, drugs, and other environmental chemicals by cytochrome P-450-mediated monooxygenases. CRC Crit Rev Biochem. 1979;6(4):401–437. doi: 10.3109/10409237909105427. [DOI] [PubMed] [Google Scholar]
- Nebert D. W., Negishi M. Multiple forms of cytochrome P-450 and the importance of molecular biology and evolution. Biochem Pharmacol. 1982 Jul 15;31(14):2311–2317. doi: 10.1016/0006-2952(82)90523-8. [DOI] [PubMed] [Google Scholar]
- OMURA T., SATO R. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. I. EVIDENCE FOR ITS HEMOPROTEIN NATURE. J Biol Chem. 1964 Jul;239:2370–2378. [PubMed] [Google Scholar]
- Ryan D. E., Iida S., Wood A. W., Thomas P. E., Lieber C. S., Levin W. Characterization of three highly purified cytochromes P-450 from hepatic microsomes of adult male rats. J Biol Chem. 1984 Jan 25;259(2):1239–1250. [PubMed] [Google Scholar]
- Ryan D. E., Thomas P. E., Reik L. M., Levin W. Purification, characterization and regulation of five rat hepatic microsomal cytochrome P-450 isozymes. Xenobiotica. 1982 Nov;12(11):727–744. doi: 10.3109/00498258209038947. [DOI] [PubMed] [Google Scholar]
- Simmons D. L., Kasper C. B. Genetic polymorphisms for a phenobarbital-inducible cytochrome P-450 map to the Coh locus in mice. J Biol Chem. 1983 Aug 25;258(16):9585–9588. [PubMed] [Google Scholar]
- Tarr G. E., Black S. D., Fujita V. S., Coon M. J. Complete amino acid sequence and predicted membrane topology of phenobarbital-induced cytochrome P-450 (isozyme 2) from rabbit liver microsomes. Proc Natl Acad Sci U S A. 1983 Nov;80(21):6552–6556. doi: 10.1073/pnas.80.21.6552. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ullrich V., Weber P. The O-dealkylation of 7-ethoxycoumarin by liver microsomes. A direct fluorometric test. Hoppe Seylers Z Physiol Chem. 1972 Jul;353(7):1171–1177. doi: 10.1515/bchm2.1972.353.2.1171. [DOI] [PubMed] [Google Scholar]
- Vlasuk G. P., Ghrayeb J., Ryan D. E., Reik L., Thomas P. E., Levin W., Walz F. G., Jr Multiplicity strain differences, and topology of phenobarbital-induced cytochromes P-450 in rat liver microsomes. Biochemistry. 1982 Feb 16;21(4):789–798. doi: 10.1021/bi00533a033. [DOI] [PubMed] [Google Scholar]
- Waxman D. J., Walsh C. Cytochrome P-450 isozyme 1 from phenobarbital-induced rat liver: purification, characterization, and interactions with metyrapone and cytochrome b5. Biochemistry. 1983 Sep 27;22(20):4846–4855. doi: 10.1021/bi00289a035. [DOI] [PubMed] [Google Scholar]
- Wolf C. R., Moll E., Friedberg T., Oesch F., Buchmann A., Kuhlmann W. D., Kunz H. W. Characterization, localization and regulation of a novel phenobarbital-inducible form of cytochrome P450, compared with three further P450-isoenzymes, NADPH P450-reductase, glutathione transferases and microsomal epoxide hydrolase. Carcinogenesis. 1984 Aug;5(8):993–1001. doi: 10.1093/carcin/5.8.993. [DOI] [PubMed] [Google Scholar]
- Wolf C. R., Oesch F. Isolation of a high spin form of cytochrome P-450 induced in rat liver by 3-methylcholanthrene. Biochem Biophys Res Commun. 1983 Mar 16;111(2):504–511. doi: 10.1016/0006-291x(83)90335-2. [DOI] [PubMed] [Google Scholar]
- Yasukochi Y., Masters B. S. Some properties of a detergent-solubilized NADPH-cytochrome c(cytochrome P-450) reductase purified by biospecific affinity chromatography. J Biol Chem. 1976 Sep 10;251(17):5337–5344. [PubMed] [Google Scholar]



