Abstract
Retinal dystrophies (RD) comprise a group of clinically and genetically heterogeneous retinal disorders, which typically result in the degeneration of photoreceptors followed by the impairment or loss of vision. Although age-related macular degeneration (AMD) and retinitis pigmentosa (RP) are among the most common forms of RD, currently, there is no effective treatment for either disorder.
Recently, abnormal protein accumulation and aggregation due to protein misfolding and proteasome inhibition have been implicated in the pathogenesis of RD. In this paper we describe effects of several factors on protein aggregation and survival of photoreceptor cells.
Expression of rhodopsin carrying P23H mutation causes its accumulation in intracellular inclusion bodies in a perinuclear area of photoreceptor cells. β- and γ-synucleins and heat shock protein Hsp-70, but not α-synuclein, protect cultured ocular cells from mutant opsin accumulation. This effect might be explained by their chaperonic activity.
Knock-out of α- and γ-synucleins does not affect gross retinal morphology, but induces tyrosine hydroxylase in the inner prexiform layer of the retina. Selegiline—a monoamine oxidase inhibitor used for the treatment of Parkinson's disease, reduces apoptosis and increases viability in cultured retinal pigment epithelium cells (APRE-19).
These results suggest that chaperones and selegiline may be considered promising candidates for the protection of ocular cells from the accumulation of misfolded and aggregated proteins.
Key Words: retinal dystrophies, chaperones, age-related macular degeneration, neuroprotection, selegiline, synuclein
References
- Agarwal, N., Crawford, M. J., Krishnamoorthy, R., Sheedlo, H. J., Roque, R. S., Organisciak, D. T., and Al-Ubaidi, M. (1998). Characterization of a SV-40 T-antigene transformed 661W mouse photoreceptor cell line. Invest. Ophthalmol. Vis. Sci.4874:189. [Google Scholar]
- Albani, D., Peverelli, E., Rametta, R., Batelli, S., Veschini, L., Negro, A., and Forloni, G. (2004). Protective effect of TAT-delivered alpha-synuclein: Relevance of the C-terminal domain and involvement of HSP70. FASEB J. 18:1713 –1715. [DOI] [PubMed] [Google Scholar]
- Al-Ubaidi, M. R., Font, R. L., Quiambao, A. B., Keener, M. J., Liou, G. I., Overbeek, P. A., and Baehr, W. (1992). Bilateral retinal and brain tumors in transgenic mice expressing simian virus 40 large T antigen under control of the human interphotoreceptor retinoid-binding protein promoter. J. Cell Biol.119:1681 –1687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Auluck, P. K., Meulener, M. C., and Bonini, N. M. (2005). Mechanisms of suppression of alpha-synuclein neurotoxicity by geldanamycin in drosophila. J. Biol. Chem. 280:2873 –2878. [DOI] [PubMed] [Google Scholar]
- Bathory, G., Szuts, T., and Magyar, K. (1987). Studies on the melanin affinity of selegiline (deprenyl) and other amphetamine derivatives. Pol. J. Pharmacol. Pharm.39:195 –201. [PubMed] [Google Scholar]
- Beere, H. M. (2004). “The stress of dying”: The role of heat shock proteins in the regulation of apoptosis. J. Cell Sci.117:2641 –2651. [DOI] [PubMed] [Google Scholar]
- Bence, N. F., Sampat, R. M., and Kopito, R. R. (2001). Impairment of the Ubiquitin-Proteasome system by protein aggregation. Science292:1552 –1555. [DOI] [PubMed] [Google Scholar]
- Bhanuprakash, R. G., Das, K. P., Petrash, M., and Surewicz, W. K. (2000). Temperature-dependent chaperone activity and structural properties of human αA- and αB-crystallins. J. Biol. Chem.275:4565 –4570. [DOI] [PubMed] [Google Scholar]
- Bressler, N. M., Bressler, S. B., and Fine, S. L. (1988). Age-related macular degeneration. Surv. Ophthalmol. 32:375 –413. [DOI] [PubMed] [Google Scholar]
- Bucciantini, M., Giannoni, E., Chiti, F., Baroni, F., Formigli, L., Zurdo, J., Taddei, N., Ramponi, G., Dobson, C. M., and Stefani, M. (2002). Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature416:507 –511. [DOI] [PubMed] [Google Scholar]
- Buys, Y. M., Trope, G. E., and Tatton, W. G. (1995). (−)-Deprenyl increases the survival of rat retinal ganglion cells after optic nerve crush. Curr. Eye Res.4:119 –126. [DOI] [PubMed] [Google Scholar]
- Chapple, J. P., and Cheetham, M. E. (2003). The chaperone environment at the cytoplasmic face of the endoplasmic reticulum can modulate rhodopsin processing and inclusion formation. J. Biol. Chem.278:19087 –19094. [DOI] [PubMed] [Google Scholar]
- Chapple, J. P., Grayson, C., Hardcastle, A. J., Saliba, R. S., vanderSpuy, J., and Cheesam, M. E. (2001). Unfolding retinal dystrophies:A role for molecular chaperones? Trends Mol. Med.7:414 –421. [DOI] [PubMed] [Google Scholar]
- da Costa, C. A., Masliah, E., and Checler, F. (2003). Beta-synuclein displays an antiapoptotic p53-dependent phenotype and protects neurons from 6-hydroxydopamine-induced caspase 3 activation: Cross-talk with alpha-synuclein and implication for Parkinson's disease. J. Biol. Chem. 278:37330 –37335. [DOI] [PubMed] [Google Scholar]
- Dobson, C. M. (2001). The structural basis of protein folding and its links with human disease. Phil. Trans. R. Soc. Lond.356:133 –145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- El-Agnaf, O. M., and Irvine, G. B. (2002). Aggregation and neurotoxicity of alpha-synuclein and related peptides. Biochem. Soc. Trans.30:559 –565. [DOI] [PubMed] [Google Scholar]
- Fink, A. L. (1998). Protein aggregation: Folding aggregates, inclusion bodies, and amyloid. Fold. Des.3:R9 –R23. [DOI] [PubMed] [Google Scholar]
- Gabai, V. L., Meriin, A. B., Yaglom, J. A., Volloch, V. Z., and Sherman, M. Y. (1998). Role of Hsp70 in regulation of stress-kinase JNK: Implications in apoptosis and aging. FEBS Lett.438:1 –4. [DOI] [PubMed] [Google Scholar]
- George, J. (2001). The synucleins. Genome Biol.3:1 –6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goedert, M. (2001). Alpha synuclein and neurodegenerative diseases. Nat. Rev. Neurosci.2:492 –501. [DOI] [PubMed] [Google Scholar]
- Haas, A. L., and Siepman, T. J. (1997). Pathways of ubiquitin conjugation. FASEB J.11:1257 –1268. [DOI] [PubMed] [Google Scholar]
- Hashimoto, M., Bar-On, P., Ho, G., Takenouchi, T., Rockenstein, E., Crews, L., and Masliah, E. (2004). Beta-synuclein regulates Akt activity in neuronal cells. A possible mechanism for neuroprotection in Parkinson's disease. J. Biol. Chem.279:23622 –23629. [DOI] [PubMed] [Google Scholar]
- Hashimoto, M., Rockenstein, E., Mante, M., Mallory, M., and Masliah, E. (2001). Beta-Synuclein inhibits alpha-synuclein aggregation: A possible role as an anti-parkinsonian factor. Neuron32:213 –223. [DOI] [PubMed] [Google Scholar]
- Illing, M. E., Rajan, R. S, Bence, N. F., and Kopito, R. R. (2002). A rhodopsin mutant linked to autosomal dominant RP is prone to aggregate and interacts with the ubiquitin proteasome system. J. Biol. Chem.277:34150 –34160. [DOI] [PubMed] [Google Scholar]
- Jensen, P. J., Alter, B. J., and O'Malley, K. L. (2003). Alpha-synuclein protects naive but not dbcAMP-treated dopaminergic cell types from 1-methyl-4-phenylpyridinium toxicity. J. Neurochem.86:196 –209. [DOI] [PubMed] [Google Scholar]
- Jeon, Y. K., Kim, S. Y., and Jeon, C. J. (2001). Morphology of calretinin and tyrosine hydroxylase-immunoreactive neurons in the pig retina. Mol. Cells11:250 –256. [PubMed] [Google Scholar]
- Johnston, J. A., Illing, M. E., and Kopito, R. R. (2002). Cytoplasmic dynein/dynactin mediates the assembly of aggresomes. Cell Motil. Cytoskeleton53:26 –38. [DOI] [PubMed] [Google Scholar]
- Johnston, J. A., Ward, C. L., and Kopito, R. R. (1998). Aggresomes: A cellular response to misfolded proteins. J. Cell Biol.143:1883 –1898. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klenotic, P. A., Munier, F. L., Marmorstein, L. Y., and Anand-Apte, B. (2004). Tissue inhibitor of metalloproteinases-3 (TIMP-3) is a binding partner of EGF-containing fibulin-like extracellular matrix protein 1 (EFEMP1): Implications for macular degenerations. J. Biol. Chem.16(279):30469 –30473. [DOI] [PubMed] [Google Scholar]
- Kolb, H., Netzer, E., and Ammermuller, J. (1997). Neural circuitry and light responses of the dopamine amacrine cell of the turtle retina. Mol. Vis.3:6. [PubMed] [Google Scholar]
- Kopito, R. R. (2000). Aggresomes, inclusion bodies, and protein aggregation. Trends Cell. Biol.10:524 –530. [DOI] [PubMed] [Google Scholar]
- Kumar, Y., and Tatu, U. (2003). Stress protein flux during recovery from simulated ischemia: Induced heat shock protein 70 confers cytoprotection by suppressing JNK activation and inhibiting apoptotic cell death. Proteomics3:513 –526. [DOI] [PubMed] [Google Scholar]
- Lomas, D. A., and Carell, R. W. Z. (2002). Serpinopathies and the conformational dementias. Nat. Rev. Genet.3:759 –768. [DOI] [PubMed] [Google Scholar]
- Manning-Bog, A. B., McCormack, A. L., Purisai, M. G., Bolin, L. M., and Di Monte, D. A. (2003). Alpha-synuclein overexpression protects against paraquat-induced neurodegeneration. J. Neurosci.23:3095 –3099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marmorstein, L. Y., Munier, F. L., Arsenijevic, Y., Schorderet, D. F., McLaughlin, P. J., Chung, D., Traboulsi, E., and Marmorstein, A. D. (2002). Aberrant accumulation of EFEMP1 underlies drusen formation in Malattia Leventinese and age-related macular degeneration. Proc. Natl. Acad. Sci. U.S.A.99:13067 –13072. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michaelides, M., Hunt, D. M., and Moore, A. T. (2003). The genetics of inherited macular dystrophies. J. Med. Genet.40:641 –650. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ninkina, N., Papachroni, K., Robertson, D. C., Schmidt, O., Delaney, L., O'Neil, F., Court, F., Rosenthal, A., Fleetwood-Walker, S. M., Davies, A. M., and Buchman, V. L. (2003) Neurons expressing the highest levels of γ-synuclein are unaffected by targeted inactivation of the gene. Mol. Cell. Biol.23:8233 –8245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noorwez, S. M., Malhotra, R., McDowell, J. H., Smith, K. A., Krebs, M. P., and Kaushal, S. (2004). Retinoids assist the cellular folding of the autosomal dominant retinitis pigmentosa opsin mutant P23H. J. Biol. Chem.279:16278 –16284. [DOI] [PubMed] [Google Scholar]
- Papp, E., Nardai, G., Soti, C., and Csermely, P. (2003). Molecular chaperones, stress proteins, and redox homeostasis. Biofactors17:249 –257. [DOI] [PubMed] [Google Scholar]
- Perez, R. G., and Hastings, T. G. (2004). Could a loss of alpha-synuclein function put dopaminergic neurons at risk? J. Neurochem.89:1318 –1324. [DOI] [PubMed] [Google Scholar]
- Perez, R. G., Waymire, J. C., Lin, E., Liu, J. J., Guo, F., and Zigmond, M. J. (2002) A role for alpha-synuclein in the regulation of dopamine biosynthesis. J. Neurosci.22:3090 –3099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ragaiey, T., Ma, J. X., Jiang, W. J., Greene, W., Seigel, G. M., and Stewart, W. C. (1997). L-deprenyl protects injured retinal precursor cells in vitro. J. Ocul. Pharmacol. Ther.13:479 –488. [DOI] [PubMed] [Google Scholar]
- Robertson, D. C., Schmidt, O., Ninkina, N., Jones, P. A., Sharkey, J., and Buchman, V. L. (2004). Developmental loss and resistance to MPTP toxicity of dopaminergic neurones in substantia nigra pars compacta of gamma-synuclein, alpha-synuclein, and double alpha/gamma-synuclein null mutant mice. J. Neurochem.89:1126 –1136. [DOI] [PubMed] [Google Scholar]
- Saliba, R. S., Munro, P. M., Luthert, P. J., and Cheetham, M. E. (2002). The cellular fate of mutant rhodopsin: Quality control, degradation, and aggresome formation. J. Cell Sci.115:2907 –2918. [DOI] [PubMed] [Google Scholar]
- Sherman, M. Y., and Goldberg, A. L. (2001). Cellular defenses against unfolded proteins: A cell biologist thinks about neurodegenerative diseases. Neuron29:15 –32. [DOI] [PubMed] [Google Scholar]
- Sladowski, D., Steer, S. J., Clothier, R. H., and Balls, M. (1993). An improved MTT assay. J. Immunol. Methods4:203 –207. [DOI] [PubMed] [Google Scholar]
- Snyder, H. M., Mensah, K., Surgucheva, I., Festoff, B., Surguchov, A., and Wolozin, B. (2005). β-Synuclein prevents proteasomal inhibition by α-synuclein but not γ-synuclein. J. Biol. Chem. 280:7562 –7569. [DOI] [PubMed] [Google Scholar]
- Snyder, H., Mensah, K., Theisler, C., Lee, J., Matouschek, A., and Wolozin, B. (2003). Aggregated and monomeric alpha-synuclein bind to the 6′ proteasomal protein and inhibit proteasomal function. J. Biol. Chem. 278:11753 –11759. [DOI] [PubMed] [Google Scholar]
- Soto, C. (2001). Protein misfolding and disease; protein refolding and therapy. FEBS Lett.498:204 –207. [DOI] [PubMed] [Google Scholar]
- Soto, C. (2003). Unfolding the role of protein misfolding in neurodegenerative diseases. Nat. Rev. Neurosci. 4:49 –60. [DOI] [PubMed] [Google Scholar]
- Surgucheva, I., Tomarev, S., Yue, B., Park, B. C., and Surguchov, A. (2005). Interaction of myocilin with gamma-synuclein. A possible role in glaucoma. Mol. Cell. Neurobiol.25:1009 –1033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Surguchov, A., McMahon, B., Masliah, E., and Surgucheva, I. (2001a). Synucleins in ocular tissues. J. Neurosci. Res.65:68 –77. [DOI] [PubMed] [Google Scholar]
- Surguchov, A., Palazzo, R. E., and Surgucheva, I. (2001b). Gamma synucleins: Subcellular localization in neuronal and nonneuronal cells and effect on signal transduction. Cell Motil. Cytoskeleton49:218 –228. [DOI] [PubMed] [Google Scholar]
- Tabrizi, S. J., Orth, M., Wilkinson, J. M., Taanman, J. W., Warner, T. T., Cooper, J. M., and Schapira, A. H. (2000). Expression of mutant alpha-synuclein causes increased susceptibility to dopamine toxicity. Hum. Mol. Genet.9:2683 –2689. [DOI] [PubMed] [Google Scholar]
- Takahata, K., Katsuki, H., Kobayashi, Y., Muraoka, S., Yoneda, F., Kume, T., Kashii, S., Honda, Y., and Akaike, A. (2003). Protective effects of selegiline and desmethylselegiline against N-methyl-d-aspartate-induced rat retinal damage. Eur. J. Pharmacol.458:81 –89. [DOI] [PubMed] [Google Scholar]
- Tan, E., Ding, X. Q., Saadi, A., Agarwal, N., Naash, M. I., and Al-Ubaidi, M. R. (2004). Expression of cone-photoreceptor-specific antigens in a cell line derived from retinal tumors in transgenic mice. Invest. Ophthalmol. Vis. Sci.45:764 –768. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tran, P. B., and Miller, R. J. (1999). Aggregates in neurodegenerative disease: Crowds and power? Trends Neurosci.22:194 –197. [DOI] [PubMed] [Google Scholar]
- Trojanowski, J. Q., and Lee, V. M. (2000). “Fatal attractions” of proteins. A comprehensive hypothetical mechanism underlying Alzheimer's disease and other neurodegenerative disorders. Ann. N.Y. Acad. Sci.924:62 –67. [DOI] [PubMed] [Google Scholar]
- Wersinger, C., and Sidhu, A. (2003). Differential cytotoxicity of dopamine and H2O2 in a human neuroblastoma divided cell line transfected with alpha-synuclein and its familial Parkinson's disease-linked mutants. Neurosci. Lett.15:124 –128. [DOI] [PubMed] [Google Scholar]
- Xu, L., Ma, J., Jiamg, W. J., Greene, W., Seigel, G. M., and Stewart, W. C. (1999). L-Deprenyl, blocking apoptosis, and regulating gene expression in cultured retinal neurons. Biochem. Pharmacol.58:1183 –1190. [DOI] [PubMed] [Google Scholar]
- Yu, H., Kaung, G., Kobayashi, S., and Kopito, R. R. (1997). Cytosolic degradation of T-cell receptor alpha chains by the proteasome. J. Biol. Chem.272:20800 –20804. [DOI] [PubMed] [Google Scholar]
- Zhao, J., Ren, Y., Jiang, Q., and Feng, J. (2003). Parkin is recruited to the centrosome in response to inhibition of proteasomes. J. Cell Sci.116:4011 –4019. [DOI] [PubMed] [Google Scholar]