Skip to main content
Cellular and Molecular Neurobiology logoLink to Cellular and Molecular Neurobiology
. 2005 Feb;25(1):59–127. doi: 10.1007/s10571-004-1377-8

Permeability Studies on In Vitro Blood–Brain Barrier Models: Physiology, Pathology, and Pharmacology

Mária A Deli 1,, Csongor S Ábrahám 2, Yasufumi Kataoka 3, Masami Niwa 4
PMCID: PMC11529645  PMID: 15962509

Abstract

1. The specifically regulated restrictive permeability barrier to cells and molecules is the most important feature of the blood–brain barrier (BBB). The aim of this review was to summarize permeability data obtained on in vitro BBB models by measurement of transendothelial electrical resistance and by calculation of permeability coefficients for paracellular or transendothelial tracers.

2. Results from primary cultures of cerebral microvascular endothelial cells or immortalized cell lines from bovine, human, porcine, and rodent origin are presented. Effects of coculture with astroglia, neurons, mesenchymal cells, blood cells, and conditioned media, as well as physiological influence of serum components, hormones, growth factors, lipids, and lipoproteins on the barrier function are discussed.

3. BBB permeability results gained on in vitro models of pathological conditions including hypoxia and reoxygenation, neurodegenerative diseases, or bacterial and viral infections have been reviewed. Effects of cytokines, vasoactive mediators, and other pathogenic factors on barrier integrity are also detailed.

4. Pharmacological treatments modulating intracellular cyclic nucleotide or calcium levels, and activity of protein kinases, protein tyrosine phosphatases, phospholipases, cyclooxygenases, or lipoxygenases able to change BBB integrity are outlined. Barrier regulation by drugs involved in the metabolism of nitric oxide and reactive oxygen species, as well as influence of miscellaneous treatments are also listed and evaluated.

5. Though recent advances resulted in development of improved in vitro BBB model systems to investigate disease modeling, drug screening, and testing vectors targeting the brain, there is a need for checking validity of permeability models and cautious interpretation of data.

Key words: blood–brain barrier, cerebral endothelial cells, coculture, in vitro model, permeability, transendothelial electrical resistance.

References

  1. Abbott, N. J. (2000). Inflammatory mediators and modulation of blood–brain barrier permeability. Cell. Mol. Neurobiol.20:131–147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abbott, N. J. (2002). Astrocyte-endothelial interactions and the blood–brain barrier permeability. J. Anat.200:629–638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Abbott N. J. (2005). Dynamics of CNS barriers: Evolution, differentiation and modulation. Cell. Mol. Neurobiol.25:5–23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Abbott, N. J., Hughes, C. C. W., Revest, P. A., and Greenwood, J. (1992). Development and characterisation of a rat brain capillary endothelial culture: Towards an in vitro blood–brain barrier. J. Cell Sci.103:23–37. [DOI] [PubMed] [Google Scholar]
  5. Abbruscato, T. J., and Davis, T. P. (1999a). Combination of hypoxia/aglycemia compromises in vitro blood–brain barrier integrity. J. Pharmacol. Exp. Ther.289:668–675. [PubMed] [Google Scholar]
  6. Abbruscato, T. J., and Davis, T. P. (1999b). Protein expression of brain endothelial cell E-cadherin after hypoxia/aglycemia: Influence of astrocyte contact. Brain Res.842:277–286. [DOI] [PubMed] [Google Scholar]
  7. Anda, T., Yamashita, H., Khalid, H., Tsutsumi, K., Fujita, H., Tokunaga, Y., and Shibata, S. (1997). Effect of tumor necrosis factor-alpha on the permeability of bovine brain microvessel endothelial cell monolayers. Neurol. Res.19:369–376. [DOI] [PubMed] [Google Scholar]
  8. Annunziata, P., Cioni, C., Santonini, R., and Paccagnini, E. (2002). Substance P antagonist blocks leakage and reduces activation of cytokine-stimulated rat brain endothelium. J. Neuroimmunol.131:41–49. [DOI] [PubMed] [Google Scholar]
  9. Annunziata, P., Cioni, C., Toneatto, S., and Paccagnini, E. (1998). HIV-1 gp120 increases the permeability of rat brain endothelium cultures by a mechanism involving substance P. AIDS12:2377–2385. [DOI] [PubMed] [Google Scholar]
  10. Arthur, F. E., Shivers, R. R., and Bowman, P. D. (1987). Astrocyte-mediated induction of tight junctions in brain capillary endothelium: An efficient in vitro model. Brain Res.433:155–159. [DOI] [PubMed] [Google Scholar]
  11. Audus, K. L., and Borchardt, R. T. (1986a). Characterization of an in vitro blood–brain barrier model system for studying drug transport and metabolism. Pharm. Res.3:81–87. [DOI] [PubMed] [Google Scholar]
  12. Audus, K. L., and Borchardt, R. T. (1986b). Characteristics of the large neutral amino acid transport system of bovine brain microvessel endothelial cell monolayers. J. Neurochem.47:484–488. [DOI] [PubMed] [Google Scholar]
  13. Badger, J. L., Stins, M. F., and Kim, K. S. (1999). Citrobacter freundii invades and replicates in human brain microvascular endothelial cells. Infect. Immun.67:4208–4215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Banks, W. A. (1999). Physiology and pathology of the blood–brain barrier: Implications for microbial pathogenesis, drug delivery and neurodegenerative disorders. J. Neurovirol.5:538–555. [DOI] [PubMed] [Google Scholar]
  15. Banks, W. A., and Broadwell, R. D. (1994). Blood to brain and brain to blood passage of native horseradish peroxidase, wheat germ agglutinin, and albumin: Pharmacokinetic and morphological assessments. J. Neurochem.62:2404–2419. [DOI] [PubMed] [Google Scholar]
  16. Bauer, H. C., and Bauer, H. (2000). Neural induction of the blood–brain barrier: Still an enigma. Cell. Mol. Neurobiol. 20:13–28. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Blasig, I. E., Giese, H., Schroeter, M. L., Sporbert, A., Utepbergenov, D. I., Buchwalow, I. B., Neubert, K., Schönfelder, G., Freyer, D., Schimke, I., Siems, W.-E., Paul, M., Haseloff, R. F., and Blasig, R. (2001). *NO and oxyradical metabolism in new cell lines of rat brain capillary endothelial cells forming the blood–brain barrier. Microvasc. Res.62:114–127. [DOI] [PubMed] [Google Scholar]
  18. Blasig, I. E., Mertsch, K., and Haseloff, R. F. (2002). Nitronyl nitroxides, a novel group of protective agents against oxidative stress in endothelial cells forming the blood–brain barrier. Neuropharmacology43:1006–1014. [DOI] [PubMed] [Google Scholar]
  19. Borges, N., Shi, F., Azevedo, I., and Audus, K. L. (1994). Changes in brain microvessel endothelial cell monolayer permeability induced by adrenergic drugs. Eur. J. Pharmacol.269:243–248. [DOI] [PubMed] [Google Scholar]
  20. Bowman, P. D., Betz, A. L., Wolinsky, J. S., Penny, J. B., Shivers, R. R., and Goldstein, G. W. (1981). Primary cultures of capillary endothelium from rat brain. In Vitro17:353–362. [DOI] [PubMed] [Google Scholar]
  21. Bowman, P. D., Ennis, S. R., Rarey, K. E., Betz, A. L., and Goldstein, G. W. (1983). Brain microvessel endothelial cells in tissue culture: A model for study of blood–brain barrier permeability. Ann. Neurol.14:396–402. [DOI] [PubMed] [Google Scholar]
  22. Brightman, M. W., and Reese, T. S. (1969). Junctions between intimately apposed cell membranes in the vertebrate brain J. Cell Biol.40:648–677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Brillault, J., Berezowski, V., Cecchelli, R., and Dehouck, M.-P. (2002). Intercommunications between brain capillary endothelial cells and glial cells increase the transcellular permeability of the blood–brain barrier during ischaemia. J. Neurochem. 83:807–817. [DOI] [PubMed] [Google Scholar]
  24. Brown, J., Reading, S. J., Jones, S., Fitchett, C. J., Howl, J., Martin, A., Longland, C. L., Michelangeli, F., Dubrova, Y. E., and Brown, C. A. (2000). Critical evaluation of ECV304 as a human endothelial cell model defined by genetic analysis and functional responses: A comparison with the human bladder cancer derived epithelial cell line T24/83. Lab. Invest.80:37–45. [DOI] [PubMed] [Google Scholar]
  25. Brown, R. C., Mark, K. S., Egleton, R. D., Huber, J. D., Burroughs, A. R., and Davis, T. P. (2003). Protection against hypoxia-induced increase in blood–brain barrier permeability: Role of tight junction proteins and NF κB. J. Cell Sci.116:693–700. [DOI] [PubMed] [Google Scholar]
  26. Brückener, K. E., el Bayâ, A., Galla, H.-J., and Schmidt, M. A. (2003). Permeabilization in a cerebral endothelial barrier model by pertussis toxin involves the PKC effector pathway and is abolished by elevated levels of cAMP. J. Cell Sci.116:1837–1846. [DOI] [PubMed] [Google Scholar]
  27. Carpentier, M., Descamps, L., Allain, F., Denys, A., Durieux, S., Fenart, L., Kieda, C., Cecchelli, R., and Spik, G. (1999). Receptor-mediated transcytosis of cyclophilin B through the blood–brain barrier. J. Neurochem.73:260–270. [DOI] [PubMed] [Google Scholar]
  28. Cecchelli, R., Dehouck, B., Descamps, L., Fenart, L., Buée-Scherrer, V., Duhem, C., Lundquist, S., Rentfel, M., Torpier, G., and Dehouck, M.-P. (1999). In vitro model for evaluating drug transport across the blood–brain barrier. Adv. Drug Deliv. Rev. 36:165–178. [DOI] [PubMed] [Google Scholar]
  29. Cestelli, A., Catania, C., D’Agostino, S., Di Liegro, I., Licata, L., Schiera, G., Pitarresi, G. L., Savettieri, G., De Caro, V., Giandalia, G., and Giannola, L. I. (2001). Functional feature of a novel model of blood brain barrier: Studies on permeation of test compounds. J. Control. Release76:139–147. [DOI] [PubMed] [Google Scholar]
  30. Chopineau, J., Robert, S., Fénart, L., Cecchelli, R., Lagoutte, B., Paitier, S., Dehouck, M.-P., and Domurado, D. (1998). Monoacylation of ribonuclease A enables its transport across an in vitro model of the blood–brain barrier. J. Control. Release56:231–237. [DOI] [PubMed] [Google Scholar]
  31. Collard, C. D., Park, K. A., Montalto, M. C., Alapati, S., Buras, J. A., Stahl, G. L., and Colgan, S. P. (2002). Neutrophil-derived glutamate regulates vascular endothelial barrier function. J. Biol. Chem.277:14801–14811. [DOI] [PubMed] [Google Scholar]
  32. Crone, C., and Olesen, S. P. (1982). Electrical resistance of brain microvascular endothelium. Brain Res.241:49–55. [DOI] [PubMed] [Google Scholar]
  33. Cucullo, L., McAllister, M. S., Kight, K., Krizanac-Bengez, L., Marroni, M., Mayberg, M. R., Stanness, K. A., and Janigro, D. (2002). A new dynamic in vitro model for the multidimensional study of astrocyte-endothelial cell interactions at the blood–brain barrier. Brain Res.951:243–254. [DOI] [PubMed] [Google Scholar]
  34. DeBault, L. E., and Cancilla, P. A. (1980). Gamma-glutamyl transpeptidase in isolated brain endothelial cells: Induction by glial cells in vitro. Science207:653–655. [DOI] [PubMed] [Google Scholar]
  35. de Boer, A. G., Gaillard, P. J., and Breimer, D. D. (1999). The transference of results between blood–brain barrier cell culture systems. Eur. J. Pharm. Sci.8:1–4. [DOI] [PubMed] [Google Scholar]
  36. de Boer, A. G., van der Sandt, I. C. J., and Gaillard, P. J. (2003). The role of drug transporters at the blood–brain barrier. Annu. Rev. Pharmacol. Toxicol.43:629–656. [DOI] [PubMed] [Google Scholar]
  37. Dehouck, B., Fenart, L., Dehouck, M.-P., Pierce, A., Torpier, G., and Cecchelli, R. (1997). A new function for the LDL receptor: Transcytosis across the blood–brain barrier. J. Cell Biol.138:877–889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Dehouck, M.-P., Cecchelli, R., Green, A. R., Renftel, M., and Lindquist, S. (2002). In vitro blood–brain barrier permeability and cerebral endothelial cell uptake of the neuroprotective nitrone compound NXY-059 in normoxic, hypoxic and ischemic conditions. Brain Res.955:229–235. [DOI] [PubMed] [Google Scholar]
  39. Dehouck M.-P., Jolliet-Riant, P., Brée, F., Fruchart, J.-C., Cecchelli, R., and Tillement, J.-P. (1992b). Drug transfer across the blood–brain barrier: Correlation between in vitro and in vivo models. J. Neurochem.58:1790–1797. [DOI] [PubMed] [Google Scholar]
  40. Dehouck, M.-P., Méresse, S., Dehouck, B., Fruchart, J. C., and Cecchelli, R. (1992a). In vitro reconstituted blood–brain barrier. J. Control. Release21:81–92. [Google Scholar]
  41. Dehouck, M.-P., Méresse, S., Delorme, P., Fruchart, J. C., and Cecchelli, R. (1990). An easier, reproducible, and mass-production method to study the blood–brain barrier in vitro. J. Neurochem.54:1798–1801. [DOI] [PubMed] [Google Scholar]
  42. Deli, M. A., Ábrahám, C. S., Niwa, M., and Falus, A. (2003). N,N-diethyl-2-[4-(phenylmethyl)phenoxy]-ethanamide increases the permeability of primary mouse cerebral endothelial cell monolayers. Inflamm. Res.52:S39–S40. [DOI] [PubMed] [Google Scholar]
  43. Deli, M. A., Dehouck, M.-P., Ábrahám, C. S., Cecchelli, R., and Joó, F. (1995a). Penetration of small molecular weight substances through cultured bovine brain capillary endothelial cells: The early effects of 3′,5′-cyclic adenosine monophosphate. Exp. Physiol.80:675–678. [DOI] [PubMed] [Google Scholar]
  44. Deli, M. A., Dehouck, M.-P., Cecchelli, R., Ábrahám, C. S., and Joó, F. (1995b). Histamine induces a selective albumin permeation through the blood–brain barrier in vitro. Inflamm. Res.44:S56–S57. [DOI] [PubMed] [Google Scholar]
  45. Deli, M. A., Descamps, L., Dehouck, M.-P., Cecchelli, R., Joó, F., Ábrahám, C. S., and Torpier, G. (1995c). Exposure of tumor necrosis factor α to the luminal membrane induces a delayed increase of permeability and formation of cytoplasmic actin stress fibers in brain capillary endothelial cells cocultured with astrocytes. J. Neurosci. Res.41:717–726. [DOI] [PubMed] [Google Scholar]
  46. Deli, M. A., and Joó, F. (1996). Cultured vascular endothelial cells of the brain. Keio J. Med.45:183–198. [DOI] [PubMed] [Google Scholar]
  47. Demeule, M., Poirier, J., Jodoin, J., Bertrand, Y., Desrosiers, R. R., Dagenais, C., Nguyen, T., Lanthier, J., Gabathuler, R., Kennard, M., Jefferies, W. A., Karkan, D., Tsai, S., Fenart, L., Cecchelli, R., and Beliveau, R. (2002). High transcytosis of melanotransferrin (P97) across the blood–brain barrier. J. Neurochem.83:924–933. [DOI] [PubMed] [Google Scholar]
  48. Demeuse, P., Kerkhofs, A., Struys-Ponsar, C., Knoops, B., Remacle, C., and van den Bosch de Aguilar, P. (2002). Compartmentalized coculture of rat brain endothelial cells and astrocytes: A syngenic model to study the blood–brain barrier. J. Neurosci. Methods121:21–31. [DOI] [PubMed] [Google Scholar]
  49. Descamps, L., Cecchelli, R., and Torpier, G. (1997). Effects of tumor necrosis factor on receptor-mediated endocytosis and barrier functions of bovine brain capillary endothelial cell monolayers. J. Neuroimmunol.74:173–184. [DOI] [PubMed] [Google Scholar]
  50. Descamps, L., Coisne, C., Dehouck, B., Cecchelli, R., and Torpier, G. (2003). Protective effect of glial cells against lipopolysaccharide-mediated blood–brain barrier injury. Glia42:46–58. [DOI] [PubMed] [Google Scholar]
  51. de Vries, H. E., Blom-Roosemalen, M. C., de Boer, A. G., van Berkel, T. J., Breimer, D. D., and Kuiper, J. (1996a). Effect of endotoxin on permeability of bovine cerebral endothelial cell layers in vitro. J. Pharmacol. Exp. Ther.277:1418–1423. [PubMed] [Google Scholar]
  52. de Vries, H. E., Blom-Roosemalen, M. C., van Oosten, M., de Boer, A. G., van Berkel, T. J., Breimer, D. D., and Kuiper, J. (1996b). The influence of cytokines on the integrity of the blood–brain barrier in vitro. J. Neuroimmunol.64:37–43. [DOI] [PubMed] [Google Scholar]
  53. Didier, N., Banks W. A., Creminon, C., Dereuddre-Bosquet, N., and Mabondzo, A. (2002). HIV-1-induced production of endothelin-1 in an in vitro model of the human blood–brain barrier. Neuroreport13:1179–1183. [DOI] [PubMed] [Google Scholar]
  54. Didier, N., Romero, I. A., Creminon, C., Wijkhuisen, A., Grassi, J., and Mabondzo, A. (2003). Secretion of interleukin-1β by astrocytes mediates endothelin-1 and tumour necrosis factor-α effects on human brain microvascular endothelial cell permeability. J. Neurochem.86:246–254. [DOI] [PubMed] [Google Scholar]
  55. Dobbie, M. S., Hurst, R. D., Klein, N. J., and Surtees, R. A. H. (1999). Upregulation of intracellular adhesion molecule-1 expression on human endothelial cells by tumour necrosis factor-α in an in vitro model of the blood–brain barrier. Brain Res.830:330–336. [DOI] [PubMed] [Google Scholar]
  56. Dohgu, S., Kataoka, Y., Ikesue, H., Naito, M., Tsuruo, T., Oishi, R., and Sawada, Y. (2000). Involvement of glial cells in cyclosporine-increased permeability of brain endothelial cells. Cell. Mol. Neurobiol.20:781–786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Duport, S., Robert, F., Muller, D., Grau, G., Parisi, L., and Stoppini, L. (1998). An in vitro blood–brain barrier model: Cocultures between endothelial cells and organotypic brain slice cultures. Proc. Natl Acad. Sci. USA95:1840–1845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Easton, A. S., and Abbott, J. N. (2002). Bradykinin increases permeability by calcium and 5-lipoxygenase in the ECV304/C6 cell culture model of the blood–brain barrier. Brain Res.953:157–169. [DOI] [PubMed] [Google Scholar]
  59. Eddy, E. P., Maleef, B. E., Hart, T. K., and Smith, P. L. (1997). In vitro models to predict blood–brain barrier. Adv. Drug Delivery Rev.23:185–198. [Google Scholar]
  60. Fenart, L., Buee-Scherrer, V., Descamps, L., Duhem, C., Poullain, M. G., Cecchelli, R., and Dehouck, M. P. (1998). Inhibition of P-glycoprotein: Rapid assessment of its implication in blood–brain barrier integrity and drug transport to the brain by an in vitro model of the blood–brain barrier. Pharm. Res.15:993–1000. [DOI] [PubMed] [Google Scholar]
  61. Fenart, L., Casanova, A., Dehouck, B., Duhem, C., Slupek, S., Cecchelli, R., and Betbeder, D. (1999). Evaluation of effect of charge and lipid coating on ability of 60-nm nanoparticles to cross an in vitro model of the blood–brain barrier. J. Pharmacol. Exp. Ther.291:1017–1022. [PubMed] [Google Scholar]
  62. Fiala, M., Looney, D. J., Stins, M., Way, D. D., Zhang, L., Gan, X., Chiappelli, F., Schweitzer, E. S., Shapshak, P., Weinand, M., Graves, M. C., Witte, M., and Kim, K. S. (1997). TNF-alpha opens a paracellular route for HIV-1 invasion across the blood–brain barrier. Mol. Med.3:553–564. [PMC free article] [PubMed] [Google Scholar]
  63. Fillebeen, C., Dehouck, B., Benaïssa, M., Dhennin-Duthille, I., Cecchelli, R., and Pierce, A. (1999a). Tumor necrosis factor-α increases lactoferrin transcytosis through the blood–brain barrier. J. Neurochem.73:2491–2500. [DOI] [PubMed] [Google Scholar]
  64. Fillebeen, C., Descamps, L., Dehouck, M. P., Fenart, L., Benaïssa, M., Spik, G., Cecchelli, R., and Pierce, A. (1999b). Receptor-mediated transcytosis of lactoferrin through the blood–brain barrier. J. Biol. Chem.274:7011–7017. [DOI] [PubMed] [Google Scholar]
  65. Fischer, S., Clauss, M., Wiesnet, M., Renz, D., Schaper, W., and Karliczek, G. F. (1999a). Hypoxia induces permeability in brain microvessel endothelial cells via VEGF and NO. Am. J. Physiol. Cell Physiol.276:C812–C820. [DOI] [PubMed] [Google Scholar]
  66. Fischer, S., Renz, D., Schaper, W., and Karliczek, G. F. (1995). In vitro effects of fentanyl, methohexital, and thiopental brain endothelial permeability. Anesthesiology82:451–458. [DOI] [PubMed] [Google Scholar]
  67. Fischer, S., Renz, D., Schaper, W., and Karliczek, G. F. (1996). Effects of barbiturates on hypoxic cultures of brain derived microvascular endothelial cells. Brain Res.707:47–53. [DOI] [PubMed] [Google Scholar]
  68. Fischer, S., Renz, D., Schaper, W., and Karliczek, G. F. (1998). Barbiturates decreases the expression of vascular endothelial growth factor in hypoxic cultures of porcine brain derived microvascular endothelial cells. Mol. Brain Res.60:89–97. [DOI] [PubMed] [Google Scholar]
  69. Fischer, S., Renz, D., Schaper, W., and Karliczek, G. F. (2001). In vitro effects of dexamethasone on hypoxia-induced hyperpermeability and expression of vascular endothelial growth factor. Eur. J. Pharmacol.411:231–243. [DOI] [PubMed] [Google Scholar]
  70. Fischer, S., Renz, D., Wiesnet, M., Schaper, W., and Karliczek, G. F. (1999b). Hypothermia abolishes hypoxia-induced hyperpermeability in brain microvessel endothelial cells. Mol. Brain Res.74:135–144. [DOI] [PubMed] [Google Scholar]
  71. Fischer, S., Wobben, M., Kleinstück, J., Renz, D., and Schaper, W. (2000). Effect of astroglial cells on hypoxia-induced permeability in PBMEC cells. Am. J. Physiol. Cell Physiol.279:C935–C944. [DOI] [PubMed] [Google Scholar]
  72. Franke, H., Galla, H.-J., and Beuckmann, C. T. (1999). An improved low-permeability in vitro-model of the blood–brain barrier: Transport studies on retinoids, sucrose, haloperidol, caffeine and mannitol. Brain Res.818:65–71. [DOI] [PubMed] [Google Scholar]
  73. Gaillard, P. J., and de Boer, A. G. (2000). Relationship between permeability status of the blood–brain barrier and in vitro permeability coefficient of a drug. Eur. J. Pharm. Sci.12:95–102. [DOI] [PubMed] [Google Scholar]
  74. Gaillard, P. J., de Boer, A. G., and Breimer, D. D. (1996). Blood–brain barrier permeability and stress: A study on excitotoxic stress and vasogenic edema. Eur. J. Pharm. Sci.4:S195. [Google Scholar]
  75. Gaillard, P. J., de Boer, A. G., and Breimer, D. D. (2003). Pharmacological investigation on lipopolysaccharide-induced permeability changes in the blood–brain barrier in vitro. Microvasc. Res.65:24–31. [DOI] [PubMed] [Google Scholar]
  76. Gaillard, P. J., Voorwinden, H., Nielsen, J., Ivanov, A., Atsumi, R., Engman, H., Ringbom, C., de Boer, A. G., and Breimer, D. D. (2001). Establishment and functional characterization of an in vitro model of the blood–brain barrier, comprising a co-culture of brain capillary endothelial cells and astrocytes. Eur. J. Pharm. Sci.13:215–222. [DOI] [PubMed] [Google Scholar]
  77. Giese, H., Mertsch, K., and Blasig, I. E. (1995). Effect of MK-801 and U83836 on a porcine brain capillary endothelial cell barrier during hypoxia. Neurosci. Lett.191:169–172. [DOI] [PubMed] [Google Scholar]
  78. Giri, R., Shen, Y., Stins, M., Yan, S. D., Schmidt, A. M., Stern, D., Kim, K.-S., Zlokovic, B., and Kalra, V. K. (2000). β-Amyloid-induced migration of monocytes across human brain endothelial cells involve RAGE and PECAM-1. Am. J. Physiol. Cell Physiol.279:C1772–C1781. [DOI] [PubMed] [Google Scholar]
  79. Girod, J., Fenart, L., Régina, A., Dehouck, M.-P., Hong, G., Scherrmann, J.-M., Cecchelli, R., and Roux, F. (1999). Transport of cationized anti-tetanus Fab′2 fragments across an in vitro blood–brain barrier model: Involvement of the transcytosis pathway. J. Neurochem.73:2002–2008. [PubMed] [Google Scholar]
  80. Gloor, S. M., Weber, A., Adachi, N., and Frei, K. (1997). Interleukin-1 modulates protein tyrosine phosphatase activity and permeability of brain endothelial cells. Biochem. Biophys. Res. Commun.239:804–809. [DOI] [PubMed] [Google Scholar]
  81. Grabb, P. A., and Gilbert, M. R. (1995). Neoplastic and pharmacological influence on the permeability of an in vitro blood–brain barrier. J. Neurosurg.82:1053–1058. [DOI] [PubMed] [Google Scholar]
  82. Greenwood, J., Pryce, G., Devine, L., Male, D. K., dos Santos, W. L., Calder, V. L., and Adamson, P. (1996). SV40 large immortalised cell lines of the rat blood–brain and blood-retinal barriers retain their phenotypic and immunological characteristics. J. Neuroimmunol.71:51–63. [DOI] [PubMed] [Google Scholar]
  83. Gu, X., Zhang, J., Brann, D. W., and Yu, F.-S. X. (2003). Brain and retinal vascular endothelial cells with extended life span established by ectopic expression of telomerase. Invest. Ophthalmol. Vis. Sci.44:3219–3225. [DOI] [PubMed] [Google Scholar]
  84. Guillot, F. L., and Audus, K. L. (1991). Angiotensin peptide regulation of bovine brain microvessel endothelial cell monolayer permeability. J. Cardiovasc. Pharmacol.18:212–218. [DOI] [PubMed] [Google Scholar]
  85. Gumbleton, M., and Audus, K. L. (2001). Progress and limitations in the use of in vitro cell cultures to serve as a permeability screen for the blood–brain barrier. J. Pharm. Sci.90:1681–1698. [DOI] [PubMed] [Google Scholar]
  86. Hamm, S., Dehouck, B., Kraus, J., Wolburg-Buchholz, K., Wolburg, H., Risau, W., Cecchelli, B., Engelhardt, B., and Dehouck, M. P. (2004). Astrocyte mediated modulation of blood–brain barrier permeability does not correlate with a loss of tight junction proteins from the cellular contacts. Cell Tissue Res.315:157–166. [DOI] [PubMed] [Google Scholar]
  87. Hart, M. N., VanDyk, L. F., Moore, S. A., Shasby, D. M., and Cancilla, P. A. (1987). Differential opening of the brain endothelial barrier following neutralization of the endothelial luminal anionic charge in vitro. J. Neuropathol. Exp. Neurol.46:141–153. [DOI] [PubMed] [Google Scholar]
  88. Haseloff, R. F., Blasig, I. E., Bauer, H.-C., and Bauer, H. (2005). In search of the astrocytic factor(s) modulating blood–brain barrier functions in brain capillary endothelial cells in vitro. Cell. Mol. Neurobiol.25:25–39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Hoheisel, D., Nitz, T., Franke, H., Wegener, J., Hakvoort, A., Tilling, T., and Galla, H.-J. (1998). Hydroocortisone reinforces the blood–brain barrier properties in a serum free cell culture system. Biochem. Biophys. Res. Commun.247:312–315. [PubMed] [Google Scholar]
  90. Homma, M., Suzuki, H., Kusuhara, H., Naito, M., Tsuruo, T., and Sugiyama, Y. (1999). High-affinity efflux transport system for glutathione conjugates on the luminal membrane of a mouse brain capillary endothelial cell line (MBEC4). J. Pharmacol. Exp. Ther.288:198–203. [PubMed] [Google Scholar]
  91. Hosoya, K., Tetsuka, K., Nagase, K., Tomi, M., Saeki, S., Ohtsuki, S., and Terasaki, T. (2000). Conditionally immortalized brain capillary endothelial cell lines established from a transgenic mouse harboring temperature-sensitive simian virus 40 large T-antigen gene. AAPS PharmSci.2(3):E27, 1–11. [http://www.pharmsci.org]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Hurst, R. D., Azam, S., Hurst, A., and Clark, J. B. (2001). Nitric-oxide-induced inhibition of glyceraldehyde-3-phosphate dehydrogenase may mediate reduced endothelial cell monolayer integrity in an in vitro model blood–brain barrier. Brain Res.894:181–188. [DOI] [PubMed] [Google Scholar]
  93. Hurst, R. D., and Clark, J. B. (1997). Nitric oxide-induced blood–brain barrier dysfunction is not mediated by inhibition of mitochondrial respiratory chain activity and/or energy depletion. Nitric Oxide1:121–129. [DOI] [PubMed] [Google Scholar]
  94. Hurst, R. D., and Clark, J. B. (1998). Alterations in transendothelial electrical resistance by vasoactive agonists and cyclic AMP in a blood–brain barrier model system. Neurochem. Res.23:149–154. [DOI] [PubMed] [Google Scholar]
  95. Hurst, R. D., and Clark, J. B. (1999). Butyric acid mediated induction of enhanced transendothelial resistance in an in vitro model blood–brain barrier system. Neurochem. Int.35:261–267. [DOI] [PubMed] [Google Scholar]
  96. Hurst, R. D., and Fritz, I. B. (1996). Properties of an immortalised vascular endothelial/glioma cell co-culture model of the blood–brain barrier. J. Cell. Physiol.167:81–88. [DOI] [PubMed] [Google Scholar]
  97. Hurst, R. D., Heales, S. J. R., Dobbie, M. S., Barker, J. E., and Clark, J. B. (1998). Decreased endothelial cell glutathione and increased sensitivity to oxidative stress in an in vitro blood–brain barrier model system. Brain Res.802:232–240. [DOI] [PubMed] [Google Scholar]
  98. Ichikawa, N., Naora, K., Hirano, H., Hashimoto, M., Masumara, S., and Iwamoto K. (1996). Isolation and primary culture of rat cerebral microvascular endothelial cells for studying drug transport in vitro. J. Pharmacol. Toxicol. Methods36:45–52. [DOI] [PubMed] [Google Scholar]
  99. Igarashi, Y., Utsumi, H., Chiba, H., Yamada-Sasamori, Y., Tobioka, H., Kamimura, Y., Furuuchi, K., Kokai, Y., Nakagawa, T., Mori, M., and Sawada, N. (1999). Glial cell-line-derived neurotrophic factor induces barrier function of endothelial cells forming the blood–brain barrier. Biochem. Biophys. Res. Commun.261:108–112. [DOI] [PubMed] [Google Scholar]
  100. Imaizumi, S., Kondo, T., Deli, M. A., Gobbel, G., Joó, F., Epstein, C. J., Yoshimoto, T., and Chan, P. H. (1996). The influence of oxygen free radicals on the permeability of the monolayer of cultured brain endothelial cells. Neurochem. Int.29:205–211. [DOI] [PubMed] [Google Scholar]
  101. Jong, A. Y., Stins, M. F., Huang, S.-H., Chen, S. H. M., and Kim, K. S. (2001). Traversal of Candida albicans across human blood–brain barrier in vitro. Infect. Immun.69:4536–4544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Joó, F. (1985). The blood–brain barrier in vitro: Ten years of research on microvessels isolated from the brain. Neurochem. Int.7:1–25. [DOI] [PubMed] [Google Scholar]
  103. Joó, F. (1992). The cerebral microvessels in culture, an update. J. Neurochem.58:1–17. [DOI] [PubMed] [Google Scholar]
  104. Joó, F. (1993). The blood–brain barrier in vitro: The second decade. Neurochem. Int.23:499–521. [DOI] [PubMed] [Google Scholar]
  105. Joó, F., and Karnushina, I. (1973). A procedure for the isolation of capillaries from rat brain. Cytobios8:41–48. [PubMed] [Google Scholar]
  106. Kannan, R., Chakrabarti, R., Tang, D., Kim, K. J., and Kaplowitz, N. (2000). GSH transport in human cerebrovascular endothelial cells and human astrocytes: Evidence for luminal localization of Na+-dependent GSH transport in HCEC. Brain Res.852:374–382. [DOI] [PubMed] [Google Scholar]
  107. Kása, P., Pákáski, M., Joó, F., and Lajtha, A. (1991). Endothelial cells from human fetal brain microvessels may be cholinoceptive, but do not synthesize acetylcholine. J. Neurochem.56:2143–2146. [DOI] [PubMed] [Google Scholar]
  108. Kempski, O., Villacara, A., Spatz, M., Dodson, R. F., Corn, C., Merkel, N., and Bembry, J. (1987). Cerebromicrovascular endothelial permeability. In-vitro studies. Acta Neuropathol. (Berl).74:329–334. [DOI] [PubMed] [Google Scholar]
  109. Kiessling, F., Kartenbeck, J., and Haller, C. (1999). Cell–cell contacts in the human cell line ECV304 exhibit both endothelial and epithelial characteristics. Cell Tissue Res.297:131–140. [DOI] [PubMed] [Google Scholar]
  110. Kis, B., Deli, M. A., Kobayashi, H., Ábrahám, C. S., Yanagita, T., Kaiya, H., Isse, T., Nishi, R., Gotoh, S., Kangawa, K., Wada, A., Greenwood, J., Niwa, M., Yamashita, H., and Ueta, Y. (2001). Adrenomedullin regulates blood–brain barrier functions in vitro. Neuroreport12:4139–4142. [DOI] [PubMed] [Google Scholar]
  111. Kochi, S., Takanaga, H., Matsuo, H., Naito, M., Tsuruo, T., and Sawada, Y. (1999). Effect of cyclosporin A or tacrolimus on the function of blood–brain barrier cells. Eur. J. Pharmacol.372:287–295. [DOI] [PubMed] [Google Scholar]
  112. Kondo, T., Kinouchi, H., Kawase, M., and Yoshimoto, T. (1996). Astroglial cells inhibit the increasing permeability of brain endothelial cell monolayer following hypoxia/reoxygenation. Neurosci. Lett.208:101–104. [DOI] [PubMed] [Google Scholar]
  113. Krizanac-Bengez, L., Kapural, M., Parkinson, F., Cucullo, L., Hossain, M., Mayberg, M. R., and Janigro, D. (2003). Effects of transient loss of shear stress on blood–brain barrier endothelium: Role of nitric oxide and IL-6. Brain Res.977:239–246. [DOI] [PubMed] [Google Scholar]
  114. Krizbai, I. A., and Deli, M. A. (2003). Signalling pathways regulating the tight junction permeability in the blood–brain barrier. Cell Mol. Biol.(Noisy-le-grand). 49:23–31. [PubMed] [Google Scholar]
  115. Krizbai, I. A., Deli, M. A., Pestenácz, A., Siklós, L., Szabó, C. A., András, I., and Joó, F. (1998). Expression of glutamate receptors on cultured cerebral endothelial cells. J. Neurosci. Res.54:814–819. [DOI] [PubMed] [Google Scholar]
  116. Kusuhara, H., and Sugiyama, Y. (2001a). Efflux transport systems for drugs at the blood–brain barrier and blood-cerebrospinal fluid barrier (Part 1). Drug Discov. Today6:150–156. [DOI] [PubMed] [Google Scholar]
  117. Kusuhara, H., and Sugiyama, Y. (2001b). Efflux transport systems for drugs at the blood–brain barrier and blood-cerebrospinal fluid barrier (Part 2). Drug Discov. Today6:206–212. [DOI] [PubMed] [Google Scholar]
  118. Kusuhara, H., Suzuki, H., Naito, M., Tsuruo, T., and Sugiyama, Y. (1998). Characterization of efflux transport of organic anions in a mouse brain capillary endothelial cell line. J. Pharmacol. Exp. Ther.285:1260–1265. [PubMed] [Google Scholar]
  119. Lagrange, P., Romero, I. A., Minn, A., and Revest, P. A. (1999). Transendothelial permeability changes induced by free radicals in an in vitro model of the blood–brain barrier. Free Radic. Biol. Med.27:667–672. [DOI] [PubMed] [Google Scholar]
  120. Lee, S.-W., Kim, W. J., Choi, Y. K., Song, H. S., Son, M. J., Gelman, I. H., Kim, Y.-J., and Kim, K.-W. (2003). SSeCKS regulates angiogenesis and tight junction formation in blood–brain barrier. Nat. Med.9:900–906. [DOI] [PubMed] [Google Scholar]
  121. Letrent, S. P., Polli, J. W., Humphreys, J. E., Pollack, G. M., Brouwer, K. R., and Brouwer, K. L. R. (1999). P-Glycoprotein-mediated transport of morphine in brain capillary endothelial cells. Biochem. Pharmacol.58:951–957. [DOI] [PubMed] [Google Scholar]
  122. Leveugle, B., Ding, W., Fenart, L., Dehouck, M.-P., Scanameo, A., Cecchelli, R., and Fillit, H. (1998). Heparin oligosaccharides that pass the blood–brain barrier inhibit β-amyloid precursor protein secretion and heparin binding to β-amyloid peptides. J. Neurochem.70:736–744. [DOI] [PubMed] [Google Scholar]
  123. Lippoldt, A., Kniesel, U., Liebner, S., Kalbacher, H., Kirsch, T., Wolburg, H., and Haller, H. (2000). Structural alterations of tight junctions are associated with loss of polarity in stroke-prone spontaneously hypertensive rat blood–brain barrier endothelial cells. Brain Res. 885:251–261. [DOI] [PubMed] [Google Scholar]
  124. Liu, N. Q., Lossinsky, A. S., Popik, W., Li, X., Gujuluva, C., Kriederman, B., Roberts, J., Pushkarsky, T., Bukrinsky, M., Witte, M., Weinand, M., and Fiala, M. (2002). Human immunodeficiency virus type 1 enters brain microvascular endothelia by macropinocytosis dependent on lipid rafts and the mitogen-activated protein kinase signaling pathway. J. Virol.76:6689–6700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Lundquist, S., Renftel, M., Brillault, J., Fenart, L., Cecchelli, R., and Dehouck, M. P. (2002). Prediction of drug transport through the blood–brain barrier in vivo: A comparison between two in vitro cell models. Pharm. Res. 19:976–981. [DOI] [PubMed] [Google Scholar]
  126. Mackic, J. B., Stins, M., Jovanovic, S., Kim, K. S., Bartus, R. T., and Zlokovic, B. V. (1999). Cereport (RMP-7) increases the permeability of human brain microvascular endothelial cell monolayers. Pharm. Res.16:1360–1365. [DOI] [PubMed] [Google Scholar]
  127. Mackic, J. B., Stins, M., McComb, J. G., Calero, M., Ghiso, J., Kim, K. S., Yan, S. D., Stern, D., Schmidt, A. M., Frangione, B., and Zlokovic, B. V. (1998). Human blood–brain barrier receptors for Alzheimer’s amyloid-beta 1–40. Asymmetrical binding, endocytosis, and transcytosis at the apical side of brain microvascular endothelial cell monolayer. J. Clin. Invest.102:734–743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Madara, J. L. (1998). Regulation of the movement of solutes across tight junctions. Annu. Rev. Physiol.60:143–159. [DOI] [PubMed] [Google Scholar]
  129. Mark, K. S., Burroughs, A. R., Brown, R. C., Huber, J. D., and Davis, T. P. (2004). Nitric oxide mediates hypoxia-induced changes in paracellular permeability of cerebral microvasculature. Am. J. Physiol. Heart Circ. Physiol.286:H174–H180. [DOI] [PubMed] [Google Scholar]
  130. Mark, K. S., and Davis, T. P. (2002). Cerebral microvascular changes in permeability and tight junctions induced by hypoxia-reoxygenation. Am. J. Physiol. Heart Circ. Physiol.282:H1485–H1494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Mark, K. S., and Miller, D. W. (1999). Increased permeability of primary cultured brain microvessel endothelial cell monolayers following TNF-α exposure. Life Sci.64:1941–1953. [DOI] [PubMed] [Google Scholar]
  132. Mark, K. S., Trickler, W. J., and Miller, D. W. (2001). Tumor necrosis factor-α induces cyclooxygenase-2 expression and prostaglandin release in brain microvessel endothelial cells. J. Pharmacol. Exp. Ther.297:1051–1058. [PubMed] [Google Scholar]
  133. Matter, K., and Balda, M. (2003a). Functional analysis of tight junctions. Methods30:228–234. [DOI] [PubMed] [Google Scholar]
  134. Matter, K., and Balda, M. (2003b). Holey barrier: Claudins and the regulation of brain endothelial permeability. J. Cell. Biol.161:459–460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Megard, I., Garrigues, A., Orlowski, S., Jorajuria, S., Clayette, P., Ezan, E., and Mabondzo, A. (2002). A co-culture-based model of human blood–brain barrier: Application to active transport of indinavir and in vivo-in vitro correlation. Brain Res.927:153–167. [DOI] [PubMed] [Google Scholar]
  136. Mertsch, K., Blasig, I., and Grune, T. (2001). 4-Hydroxynonenal impairs the permeability of an in vitro rat blood–brain barrier. Neurosci. Lett.314:135–138. [DOI] [PubMed] [Google Scholar]
  137. Mi, H., Haeberle, H., and Barres, B. A. (2001). Induction of astrocyte differentiation by endothelial cells. J. Neurosci.21:1538–1547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Muruganandam, A., Herx, L. M., Monette, R., Durkin, J. P., and Stanimirovic, D. (1997). Development of immortalized human cerebromicrovascular endothelial cell line as an in vitro model of the human blood–brain barrier. FASEB J.11:1187–1197. [DOI] [PubMed] [Google Scholar]
  139. Muruganandam, A., Tanha, J., Narang, S., and Stanimirovic, D. (2002). Selection of phage-displayed llama single-domain antibodies that transmigrate across human blood–brain barrier endothelium. FASEB J.16:240–242. [DOI] [PubMed] [Google Scholar]
  140. Nag, S. (2003). Blood–brain barrier permeability using tracers and immunohistochemistry. In Nag, S. (ed.), The Blood–Brain Barrier: Biology and Research Protocols.Methods in Molecular Medicine, Vol. 89, Humana Press, Totowa, NJ, pp. 133–144. [DOI] [PubMed] [Google Scholar]
  141. Neuhaus, J., Risau, W., and Wolburg, H. (1991). Induction of blood–brain barrier characteristics in bovine brain endothelial cells by rat astroglial cells in transfilter coculture. Ann. N. Y. Acad. Sci.633:578–580. [DOI] [PubMed] [Google Scholar]
  142. Nitta, T., Hata, M., Gotoh, S., Seo, Y., Sasaki, H., Hashimoto, N., Furuse, M., and Tsukita, S. (2003). Size-selective loosening of the blood–brain barrier in claudin-5-deficient mice. J. Cell. Biol.161:653–660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Nitz, T., Eisenblatter, T., Psathaki, K., and Galla, H.-J. (2003). Serum-derived factors weaken the barrier properties of cultured porcine brain capillary endothelial cells in vitro. Brain Res.981:30–40. [DOI] [PubMed] [Google Scholar]
  144. Omidi, Y., Campbell, L., Barar, J., Connell, D., Akhtar, S., and Gumbleton, M. (2003). Evaluation of the immortalised mouse brain capillary endothelial cell line, b.End3, as an in vitro blood–brain barrier model for drug uptake and transport studies. Brain Res.990:95–122. [DOI] [PubMed] [Google Scholar]
  145. Panula, P., Joó, F., and Rechardt, L. (1978). Evidence for the presence of viable endothelial cells in cultures derived from dissociated rat brain. Experientia34:95–97. [DOI] [PubMed] [Google Scholar]
  146. Pardridge, W. M. (2002). Drug and gene targeting to brain with molecular trojan horses. Nat. Rev. Drug Discov.1:131–139. [DOI] [PubMed] [Google Scholar]
  147. Parkinson, F. E., Friesen, J., Krizanac-Bengez, L., and Janigro, D. (2003). Use of three-dimensional in vitro model of the rat blood–brain barrier to assay nucleoside efflux from brain. Brain Res.980:233–241. [DOI] [PubMed] [Google Scholar]
  148. Pirro, J. P., Di Rocco, R. J., Narra, R. K., and Nunn, A. D. (1994). Relationship between in vitro transendothelial permeability and in vivo single-pass brain extraction. J. Nucl. Med.35:1514–1519. [PubMed] [Google Scholar]
  149. Plateel, M., Dehouck, M.-P., Torpier, G., Cecchelli, R., and Teissier, E. (1995). Hypoxia increases the susceptibility of oxidant stress and the permeability of the blood–brain barrier endothelial cell monolayer. J. Neurochem.65:2138–2145. [DOI] [PubMed] [Google Scholar]
  150. Plateel, M., Teissier, E., and Cecchelli, R. (1997). Hypoxia dramatically increases the nonspecific transport of blood-borne proteins to the brain. J. Neurochem.68:874–877. [DOI] [PubMed] [Google Scholar]
  151. Prat, A., Biernacki, K., Wosik, K., and Antel, J. P. (2001). Glial cell influence on the human blood–brain barrier. Glia36:145–155. [DOI] [PubMed] [Google Scholar]
  152. Ramsohoye, P. V., and Fritz I. B. (1998). Preliminary characterization of glial-secreted factors responsible for the induction of high electrical resistances across endothelial monolayers in a blood–brain barrier model. Neurochem. Res.23:1545–1551. [DOI] [PubMed] [Google Scholar]
  153. Raub, T. J. (1996). Signal transduction and glial cell modulation of cultured brain microvessel endothelial cell tight junctions. Am. J. Physiol. Cell Physiol.271:C495–C503. [DOI] [PubMed] [Google Scholar]
  154. Raub, T. J., Kuentzel, S. L., and Sawada, G. A. (1992). Permeability of bovine brain microvessel endothelial cells in vitro: Barrier tightening by a factor released from astroglioma cells. Exp. Cell Res.199:330–340. [DOI] [PubMed] [Google Scholar]
  155. Reese, T. S., and Karnovsky, M. J. (1967). Fine structural localization of a blood–brain barrier to exogenous peroxidase. J. Cell Biol.34:207–217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Reichel, A., Begley, D. J., and Abbott, N. J. (2003). An overview of in vitro techniques for blood–brain barrier studies. In Nag, S. (ed.), The Blood–Brain Barrier: Biology and Research Protocols.Methods in Molecular Medicine, Vol. 89, Humana Press, Totowa, NJ, pp. 307–324. [DOI] [PubMed] [Google Scholar]
  157. Rist, R. J., Romero, I. A., Chan, M. W. K., and Abbott, N. J. (1996). Effects of energy deprivation induced by fluorocitrate in immortalised rat brain microvessel endothelial cells. Brain Res.730:87–94. [DOI] [PubMed] [Google Scholar]
  158. Rist, R. J., Romero, I. A., Chan, M. W. K., Couraud, P.-O., Roux, F., and Abbott, N. J. (1997). F-Actin cytoskeleton and sucrose permeability of immortalised rat brain microvascular endothelial cell monolayers: Effects of cyclic AMP and astrocytic factors. Brain Res.768:10–18. [DOI] [PubMed] [Google Scholar]
  159. Romero, I. A., Prevost, M.-C., Perret, E., Adamson, P., Greenwood, J., Couraud, P.-O., and Ozden, S. (2000). Interactions between brain endothelial cells and human T-cell leukemia virus type 1-infected lymphocytes: Mechanisms of viral entry into the central nervous system. J. Virol.74:6021–6030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  160. Romero, I. A., Radewicz, K., Jubin, E., Michel, C. C., Greenwood, J., Couraud, P.-O., and Adamson, P. (2003). Changes in cytoskeletal and tight junctional proteins correlate with decreased permeability induced by dexamethasone in cultured rat brain endothelial cells. Neurosci. Lett.344:112–116. [DOI] [PubMed] [Google Scholar]
  161. Romero, I. A., Rist, R. J., Aleshaiker, A., and Abbott, N. J. (1997a). Metabolic and permeability changes caused by thiamine deficiency in immortalized rat brain microvessel endothelial cells. Brain Res.756:133–140. [DOI] [PubMed] [Google Scholar]
  162. Romero, I. A., Rist, R. J., Chan, M W., and Abbott, N. J. (1997b). Acute energy deprivation syndromes: Investigation of m-dinitrobenzene and alpha-chlorhydrin toxicity on immortalized rat brain microvessel endothelial cells. Neurotoxicology18:781–791. [PubMed] [Google Scholar]
  163. Roux, F., and Couraud, P.-O. (2005). Rat brain endothelial cell lines for the study of blood–brain barrier permeability and transport functions. Cell. Mol. Neurobiol.25:41–58. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Rubin, L. L., Hall, D. E., Porter, S., Barbu, K., Cannon, C., Horner, H. C., Janatpour, M., Liaw, C. W., Manning, K., Morales, J., Tanner, L. I., Tomaselli, K. J., and Bard, F. (1991). A cell culture model of the blood–brain barrier. J. Cell Biol.115:1725–1735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  165. Rubin, L. L., and Staddon, J. M. (1999). The cell biology of the blood–brain barrier. Annu. Rev. Neurosci.22:11–28. [DOI] [PubMed] [Google Scholar]
  166. Ruchoux, M.-M., Brulin, P., Brillault, J., Dehouck, M.-P., Cecchelli, R., and Bataillard, M. (2002). Lessons from CADASIL. Ann. N. Y. Acad. Sci.977:224–231. [DOI] [PubMed] [Google Scholar]
  167. Rutten, M. J., Hoover, R. L., and Karnovsky, M. J. (1987). Electrical resistance and macromolecular permeability of brain endothelial monolayer cultures. Brain Res.425:301–310. [DOI] [PubMed] [Google Scholar]
  168. Sahagun, G., Moore, S. A., and Hart, M. N. (1990). Permeability of neutral vs. anionic dextrans in cultured brain microvascular endothelium. Am. J. Physiol.259:H162–H166. [DOI] [PubMed] [Google Scholar]
  169. Schaddelee, M. P., Voorwinden, H. L., van Tilburg. E. W., Pateman, T. J., Ijzerman, A. P., Danhof, M., and de Boer, A. G. (2003). Functional role of adenosine receptor subtypes in the regulation of blood–brain barrier permeability: Possible implications for the design of synthetic adenosine derivatives. Eur. J. Pharm. Sci.19:13–22. [DOI] [PubMed] [Google Scholar]
  170. Schirmacher, A., Winters, S., Fischer, S., Goeke, J., Galla, H. J., Kullnick, U., Ringelstein, E. B., and Stogbauer, F. (2000). Electromagnetic fields (1.8 GHz) increase the permeability to sucrose of the blood–brain barrier in vitro. Bioelectromagnetics21:338–345. [PubMed] [Google Scholar]
  171. Schulze, C., Smales, C., Rubin, L. L., and Staddon, J. M. (1997). Lysophosphatidic acid increases tight junction permeability in cultured brain endothelial cells. J. Neurochem.68:991–1000. [DOI] [PubMed] [Google Scholar]
  172. Scism, J. L., Laska, D. A., Horn, J. W., Gimple, J. L., Pratt, S. E., Shepard, R. L., Dantzig, A. H., and Wrighton, S. A. (1999). Evaluation of an in vitro coculture model for the blood–brain barrier: Comparison of human umbilical vein endothelial cells (ECV304) and rat glioma cells from two commercial sources. In Vitro Cell Dev. Biol. Anim.35:580–592. [DOI] [PubMed] [Google Scholar]
  173. Semenza, G. L. (2001). Hypoxia-inducible factor 1: Oxygen homeostasis and disease pathophysiology. Trends Mol. Med.7:345–350. [DOI] [PubMed] [Google Scholar]
  174. Sharp, C. D., Hines, I., Houghton, J., Warren, A., Jackson, T. H. IV, Jawahar, A., Nanda, A., Elrod, J. W., Long, A., Chi, A., Minagar, A., and Alexander, J. S. (2003). Glutamate causes a loss in human cerebral endothelial barrier integrity through activation of NMDA receptor. Am. J. Physiol. Heart Circ. Physiol.285:H2592–H2598. [DOI] [PubMed] [Google Scholar]
  175. Smith, K. R., and Borchardt, R. T. (1989). Permeability and mechanism of albumin, cationized albumin, and glycosylated albumin transcellular transport across monolayers of cultured bovine brain capillary endothelial cells. Pharm. Res.6:466–473. [DOI] [PubMed] [Google Scholar]
  176. Sobue, K., Yamamoto, N., Yoneda, K., Hodgson, M.E., Yamashiro, K., Tsuruoka, N., Tsuda, T., Katsuya, H., Miura, Y., Asai, K., and Kato, T. (1999). Induction of blood–brain barrier properties in immortalized bovine brain endothelial cells by astrocytic factors. Neurosci. Res.35:155–164. [DOI] [PubMed] [Google Scholar]
  177. Song, H. S., Son, M. J., Lee, Y. M., Kim, W. J., Lee, S.-W., Kim, C. W., and Kim, K.-W. (2002). Oxygen tension regulates the maturation of the blood–brain barrier. Biochem. Biophys. Res. Commun.290:325–331. [DOI] [PubMed] [Google Scholar]
  178. Staddon, J. M., Herrenknecht, K., Smales, C., and Rubin, L. L. (1995). Evidence that tyrosine phosphorylation may increase tight junction permeability. J. Cell Sci.108:609–619. [DOI] [PubMed] [Google Scholar]
  179. Stanness, K. A., Neumaier, J. F., Sexton, T. J., Grant, G. A., Emmi, A., Maris, D. O., and Janigro, D. (1999). A new model of the blood–brain barrier: Co-culture of neuronal, endothelial, and glial cells under dynamic conditions. Neuroreport10:3725–3731. [DOI] [PubMed] [Google Scholar]
  180. Stins, M. F., Badger, J., and Kim, K. S. (2001). Bacterial invasion and transcytosis in transfected human brain microvascular endothelial cells. Microb. Pathog.30:19–28. [DOI] [PubMed] [Google Scholar]
  181. Suda, K., Rothen-Rutishauser, B., Gunthert, M., and Wunderli-Allenspach, H. (2001). Phenotypic characterization of human umbilical vein endothelial (ECV304) and urinary carcinoma (T24) cells: Endothelial versus epithelial features. In Vitro Cell Dev. Biol. Anim.37:505–514. [DOI] [PubMed] [Google Scholar]
  182. Tamai, I., Yamashita, J., Kido, Y., Ohnari, A., Sai, Y., Shima, Y., Naruhashi, K., Koizumi, S., and Tsuji, A. (2000). Limited distribution of new quinolone antibacterial agents into brain caused by multiple efflux transporters at the blood–brain barrier. J. Pharmacol. Exp. Ther.295:146–152. [PubMed] [Google Scholar]
  183. Tan, K. H., Dobbie, M. S., Felix, R. A., Barrand, M. A., and Hurst, R. D. (2001). A comparison of the induction of immortalized endothelial cell impermeability by astrocytes. Neuroreport12:1329–1334. [DOI] [PubMed] [Google Scholar]
  184. Tao-Cheng, J. H., Nagy, Z., and Brightman, M. W. (1987). Tight junctions of brain endothelium in vitro are enhanced by astroglia. J. Neurosci.7:3293–3299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  185. Tatsuta, T., Naito, M., Oh-hara, T., Sugawara, I., and Tsuruo, T. (1992). Functional involvement of P-glycoprotein in blood–brain barrier. J. Biol. Chem.267:20383–20391. [PubMed] [Google Scholar]
  186. Terasaki, T., and Hosoya, K. (2001). Conditionally immortalized cell lines as a new in vitro model for the study of barrier functions. Biol. Pharm. Bull.24:111–118. [DOI] [PubMed] [Google Scholar]
  187. Thomas, S. A., Abbruscato, T. J., Hau, V. S., Gillespie, T. J., Zsigo, J., Hruby, V. J., and Davis, T. P. (1997). Structure-activity relationships of a series of [D-Ala2]deltorphin I and II analogues; in vitro blood–brain barrier permeability and stability. J. Pharmacol. Exp. Ther.281:817–825. [PubMed] [Google Scholar]
  188. Tilling, T., Korte, D., Hoheisel, D., and Galla, H.-J. (1998). Basement membrane proteins influence brain capillary endothelial barrier function in vitro. J. Neurochem.71:1151–1157. [DOI] [PubMed] [Google Scholar]
  189. Trottein, F., Descamps, L., Nutten, S., Dehouck, M.-P., Angeli, V., Capron, A., Cecchelli, R., and Capron, M. (1999). Schistosoma mansoni activates host microvascular endothelial cells to acquire an anti-inflammatory phenotype. Infect. Immun.67:3403–3409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  190. Tsuji, A., and Tamai, I. (1999). Carrier-mediated or specialized transport of drugs across the blood–brain barrier. Adv. Drug Deliv. Rev.36:277–290. [DOI] [PubMed] [Google Scholar]
  191. Tunkel, A. R., Rosser, S. W., Hansen, E. J., and Scheld, W. M. (1991). Blood–brain barrier alterations in bacterial meningitis: Development of an in vitro model and observations on the effects of lipopolysaccharide. In Vitro Cell Dev. Biol.27A:113–120. [DOI] [PubMed] [Google Scholar]
  192. Utepbergenov, D. I., Mertsch, K., Sporbert, A., Tenz, K., Paul, M., Haseloff, R. F., and Blasig, I. E. (1998). Nitric oxide protects blood–brain barrier in vitro from hypoxia/reoxygenation-mediated injury. FEBS Lett.424:197–201. [DOI] [PubMed] [Google Scholar]
  193. van Bree, J. B. M. M., de Boer, A. G., Danhof, M., Ginsel, L. A., and Breimer, D. D. (1988). Characterization of an “in vitro” blood–brain barrier: Effects of molecular size and lipophilicity on cerebrovascular endothelial transport rates of drugs. J. Pharmacol. Exp. Ther.247:1233–1239. [PubMed] [Google Scholar]
  194. van Bree, J. B. M. M., de Boer, A. G., Verhoef, J. C., Danhof, M., and Breimer, D. D. (1989). Transport of vasopressin fragments across the blood–brain barrier: “In vitro” studies using monolayer cultures of bovine brain endothelial cells. J. Pharmacol. Exp. Ther.249:901–905. [PubMed] [Google Scholar]
  195. Villacara, A., Kempski, O., and Spatz, M. (1990). Arachidonic acid and cerebromicrovascular endothelial permeability. In Long, D. (ed.), Advances in Neurology, Vol. 52, Raven Press, New York, NY, pp. 195–201. [PubMed] [Google Scholar]
  196. Wang, W., Dentler, W. L., and Borchardt, R. T. (2001). VEGF increases BMEC monolayer permeability by affecting occludin expression and tight junction assembly. Am. J. Physiol. Heart Circ. Physiol.280:H434–H440. [DOI] [PubMed] [Google Scholar]
  197. Wang, W., Merrill, M. J., and Borchardt, R. T. (1996). Vascular endothelial growth factor affects permeability of brain microvessel endothelial cells in vitro. Am. J. Physiol. Cell Physiol.271:C1973–C1980. [DOI] [PubMed] [Google Scholar]
  198. Wolburg, H., and Lippoldt, A. (2002). Tight junctions of the blood–brain barrier: Development, composition and regulation. Vascul. Pharmacol.38:323–337. [DOI] [PubMed] [Google Scholar]
  199. Wolburg, H., Neuhaus, J., Kniesel, U., Krauß, B., Schmid, E.-M., Öcalan, M., Farrell, C., and Risau, W. (1994). Modulation of tight junction structure in blood–brain barrier endothelial cells. Effects of tissue culture, second messengers and cocultured astrocytes. J. Cell Sci.107:1347–1357. [DOI] [PubMed] [Google Scholar]
  200. Yamagata, K., Tagami, M., Nara, Y., Fujino, H., Kubota, A., Numano, F., Kato, T., and Yamori, Y. (1997). Faulty induction of blood–brain barrier functions by astrocytes isolated from stroke-prone spontaneously hypertensive rats. Clin. Exp. Pharmacol. Physiol.24:686–691. [DOI] [PubMed] [Google Scholar]
  201. Yamagata, K., Tagami, M., Takenaga, F., Yamori, Y., Nara, Y., and Itoh, S. (2003). Polyunsaturated fatty acids induce tight junctions to form in brain capillary endothelial cells. Neuroscience116:649–656. [DOI] [PubMed] [Google Scholar]
  202. Yang, J., Mutkus, L. A., Sumner, D., Stevens, J. T., Eldridge, J. C., Strandhoy, J. W., and Aschner, M. (2001). Transendothelial permeability of chlorpyrifos in RBE4 monolayers is modulated by astrocyte-conditioned medium. Mol. Brain Res.97:43–50. [DOI] [PubMed] [Google Scholar]
  203. Youdim, K. A., Dobbie, M. S., Kuhnle, G., Proteggente, A. R., Abbott, N. J., and Rice-Evans, C. (2003). Interaction between flavonoids and the blood–brain barrier: In vitro studies. J. Neurochem.85:180–192. [DOI] [PubMed] [Google Scholar]
  204. Zenker, D., Begley, D., Bratzke, H., Rübsamen-Waigmann, H., and von Briesen, H. (2003). Human blood-derived macrophages enhance barrier function of cultured brain capillary endothelial cells. J. Physiol.551:1023–1032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  205. Zysk, G., Schneider-Wald, B. K., Hwang, J. H., Bejo, L., Kim, K. S., Mitchell, T. J., Hakenbeck, R., and Heinz, H.-P. (2001). Pneumolysin in the main inducer of cytotoxicity to brain microvascular endothelial cells caused by Streptococcus pneumoniae. Infect. Immun.69:845–852. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cellular and Molecular Neurobiology are provided here courtesy of Springer

RESOURCES