Full text
PDF











Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alben J. O., Bare G. H., Bromberg P. A. Sulphydryl groups as a new molecular probe at the alpha1 beta1 interface in haemoglobin using Fourier transform infrared spectroscopy. Nature. 1974 Dec 20;252(5485):736–738. doi: 10.1038/252736a0. [DOI] [PubMed] [Google Scholar]
- Alben J. O., Bare G. H. Ligand-dependent heme-protein interactions in human hemoglobin studied by Fourier transform infrared spectroscopy. Effects of quaternary structure on alpha chain tertiary structure measured at the alpha-104(G11) cysteine-SH. J Biol Chem. 1980 May 10;255(9):3892–3897. [PubMed] [Google Scholar]
- Albery W. J., Knowles J. R. Free-energy profile of the reaction catalyzed by triosephosphate isomerase. Biochemistry. 1976 Dec 14;15(25):5627–5631. doi: 10.1021/bi00670a031. [DOI] [PubMed] [Google Scholar]
- Argade P. V., Gerke G. K., Weber J. P., Peticolas W. L. Resonance Raman carbonyl frequencies and ultraviolet absorption maxima as indicators of the active site environment in native and unfolded chromophoric acyl-alpha-chymotrypsin. Biochemistry. 1984 Jan 17;23(2):299–304. doi: 10.1021/bi00297a019. [DOI] [PubMed] [Google Scholar]
- Asbóth B., Stokum E., Khan I. U., Polgár L. Mechanism of action of cysteine proteinases: oxyanion binding site is not essential in the hydrolysis of specific substrates. Biochemistry. 1985 Jan 29;24(3):606–609. doi: 10.1021/bi00324a010. [DOI] [PubMed] [Google Scholar]
- Aton B., Doukas A. G., Narva D., Callender R. H., Dinur U., Honig B. Resonance Raman studies of the primary photochemical event in visual pigments. Biophys J. 1980 Jan;29(1):79–94. doi: 10.1016/S0006-3495(80)85119-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bare G. H., Alben J. O., Bromberg P. A. Sulfhydryl groups in hemoglobin. A new molecular probe at the alpha1 beta 1 interface studied by Fourier transform infrared spectroscopy. Biochemistry. 1975 Apr 22;14(8):1578–1583. doi: 10.1021/bi00679a005. [DOI] [PubMed] [Google Scholar]
- Belasco J. G., Knowles J. R. Direct observation of substrate distortion by triosephosphate isomerase using Fourier transform infrared spectroscopy. Biochemistry. 1980 Feb 5;19(3):472–477. doi: 10.1021/bi00544a012. [DOI] [PubMed] [Google Scholar]
- Belasco J. G., Knowles J. R. Polarization of substrate carbonyl groups by yeast aldolase: investigation by Fourier transform infrared spectroscopy. Biochemistry. 1983 Jan 4;22(1):122–129. doi: 10.1021/bi00270a018. [DOI] [PubMed] [Google Scholar]
- Birge R. R. Photophysics of light transduction in rhodopsin and bacteriorhodopsin. Annu Rev Biophys Bioeng. 1981;10:315–354. doi: 10.1146/annurev.bb.10.060181.001531. [DOI] [PubMed] [Google Scholar]
- Brubacher L. J., Bender M. L. The preparation and properties of trans-cinnamoyl-papain. J Am Chem Soc. 1966 Dec 20;88(24):5871–5880. doi: 10.1021/ja00976a032. [DOI] [PubMed] [Google Scholar]
- Campion A., El-Sayed M. A., Terner J. Resonance Raman kinetic spectroscopy of bacteriorhodopsin on the microsecond time scale. Biophys J. 1977 Dec;20(3):369–375. doi: 10.1016/S0006-3495(77)85555-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campion A., Terner J., El-Sayed M. A. Time-resolved resonance Raman spectroscopy of bacteriorhodopsin. Nature. 1977 Feb 17;265(5595):659–661. doi: 10.1038/265659a0. [DOI] [PubMed] [Google Scholar]
- Carey P. R., Angus R. H., Lee H. H., Storer A. C. Identity of acyl group conformations in the active sites of papain and cathepsin B by resonance Raman spectroscopy. J Biol Chem. 1984 Dec 10;259(23):14357–14360. [PubMed] [Google Scholar]
- Carey P. R., Carriere R. G., Lynn K. R., Schneider H. Resonance Raman evidence for substrate reorginization in the active site of papain. Biochemistry. 1976 Jun 1;15(11):2387–2393. doi: 10.1021/bi00656a022. [DOI] [PubMed] [Google Scholar]
- Carey P. R., Carriere R. G., Phelps D. J., Schneider H. Charge effects in the active site of papain: resonance Raman and absorption evidence for electron polarization occurring in the acyl group of some acylpapains. Biochemistry. 1978 Mar 21;17(6):1081–1087. doi: 10.1021/bi00599a022. [DOI] [PubMed] [Google Scholar]
- Carey P. R., King R. W. Neoprontosil binding to carbonic anhydrase. Reasonance Raman and other studies on the ionization behavior of the sulfonamide. Biochemistry. 1979 Jun 26;18(13):2834–2838. doi: 10.1021/bi00580a024. [DOI] [PubMed] [Google Scholar]
- Carey P. R., Schneider H. Evidence for a structural change in the substrate preceding hydrolysis of a chymotrypsin acyl enzyme: application of the resonance Raman labelling technique to a dynamic biochemical system. J Mol Biol. 1976 Apr 15;102(3):679–693. doi: 10.1016/0022-2836(76)90341-7. [DOI] [PubMed] [Google Scholar]
- Carey P. R., Storer A. C. Characterization of transient enzyme-substrate bonds by resonance Raman spectroscopy. Annu Rev Biophys Bioeng. 1984;13:25–49. doi: 10.1146/annurev.bb.13.060184.000325. [DOI] [PubMed] [Google Scholar]
- Chen M. C., Lord R. C. Laser Raman spectroscopic studies of the thermal unfolding of ribonuclease A. Biochemistry. 1976 May 4;15(9):1889–1897. doi: 10.1021/bi00654a015. [DOI] [PubMed] [Google Scholar]
- Cookingham R., Lewis A. Resonance Raman spectroscopy of chemically modified retinals: assigning the carbon--methyl vibrations in the resonance Raman spectrum of rhodopsin. J Mol Biol. 1978 Mar 15;119(4):569–577. doi: 10.1016/0022-2836(78)90203-6. [DOI] [PubMed] [Google Scholar]
- Desbois A., Lutz M., Banerjee R. Low-frequency vibrations in resonance Raman spectra of horse heart myoglobin. Iron-ligand and iron-nitrogen vibrational modes. Biochemistry. 1979 Apr 17;18(8):1510–1518. doi: 10.1021/bi00575a019. [DOI] [PubMed] [Google Scholar]
- Doukas A. G., Aton B., Callender R. H., Ebrey T. G. Resonance Raman studies of bovine metarhodopsin I and metarhodopsin II. Biochemistry. 1978 Jun 13;17(12):2430–2435. doi: 10.1021/bi00605a028. [DOI] [PubMed] [Google Scholar]
- Eckert K., Grosse R., Malur J., Repke K. R. Calculation and use of protein-derived conformation-related spectra for the estimate of the secondary structure of proteins from their infrared spectra. Biopolymers. 1977 Nov;16(11):2549–2563. doi: 10.1002/bip.1977.360161116. [DOI] [PubMed] [Google Scholar]
- Ehrenberg B., Lewis A. The pK of Schiff base deprotonation in bacteriorhodopsin. Biochem Biophys Res Commun. 1978 Jun 29;82(4):1154–1159. doi: 10.1016/0006-291x(78)90307-8. [DOI] [PubMed] [Google Scholar]
- Eyring G., Mathies R. Resonance Raman studies of bathorhodopsin: evidence for a protonated Schiff base linkage. Proc Natl Acad Sci U S A. 1979 Jan;76(1):33–37. doi: 10.1073/pnas.76.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gordon P. L., Huang C., Lord R. C., Yannas I. V. The far-infrared spectrum of collagen. Macromolecules. 1974 Nov-Dec;7(6):954–956. doi: 10.1021/ma60042a052. [DOI] [PubMed] [Google Scholar]
- Honig B., Ebrey T., Callender R. H., Dinur U., Ottolenghi M. Photoisomerization, energy storage, and charge separation: a model for light energy transduction in visual pigments and bacteriorhodopsin. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2503–2507. doi: 10.1073/pnas.76.6.2503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kincaid J., Stein P., Spiro T. G. Absence of heme-localized strain in T state hemoglobin: insensitivity of heme-imidazole resonance Raman frequencies to quaternary structure. Proc Natl Acad Sci U S A. 1979 Feb;76(2):549–552. doi: 10.1073/pnas.76.2.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kitagawa T., Nishina Y., Kyogoku Y., Yamano T., Ohishi N., Takai-Suzuki A., Yagi K. Resonance Raman spectra of carbon-13- and nitrogen-15-labeled riboflavin bound to egg-white flavoprotein. Biochemistry. 1979 May 1;18(9):1804–1808. doi: 10.1021/bi00576a026. [DOI] [PubMed] [Google Scholar]
- Kumar K., King R. W., Carey P. R. Resonance Raman studies in some carboni anhydrase-aromatic sulfonamide complexes. Biochemistry. 1976 May 18;15(10):2195–2202. doi: 10.1021/bi00655a026. [DOI] [PubMed] [Google Scholar]
- LOWE G., WILLIAMS A. A STUDY OF SOME THIOL ESTER HYDROLYSES AS MODELS FOR THE DEACYLATION STEP OF PAPAIN-CATALYSED HYDROLYSES. Biochem J. 1965 Jul;96:194–198. doi: 10.1042/bj0960194. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee H., Storer A. C., Carey P. R. Conformational states of N-acylglycine dithioesters in solution: resonance Raman studies of isotopically substituted models for enzyme-substrate complexes. Biochemistry. 1983 Sep 27;22(20):4781–4789. doi: 10.1021/bi00289a026. [DOI] [PubMed] [Google Scholar]
- Lewis A. The molecular mechanism of excitation in visual transduction and bacteriorhodopsin. Proc Natl Acad Sci U S A. 1978 Feb;75(2):549–553. doi: 10.1073/pnas.75.2.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lewis A. Tunable laser resonance Raman spectroscopic investigations of the transduction process in vertebrate rod cells. Fed Proc. 1976 Jan;35(1):51–53. [PubMed] [Google Scholar]
- Lewis S. D., Johnson F. A., Shafer J. A. Potentiometric determination of ionizations at the active site of papain. Biochemistry. 1976 Nov 16;15(23):5009–5017. doi: 10.1021/bi00668a010. [DOI] [PubMed] [Google Scholar]
- Lippert J. L., Tyminski D., Desmeules P. J. Determination of the secondary structure of proteins by laser Raman spectroscopy. J Am Chem Soc. 1976 Oct 27;98(22):7075–7080. doi: 10.1021/ja00438a057. [DOI] [PubMed] [Google Scholar]
- Lord R. C., Yu N. T. Laser-excited Raman spectroscopy of biomolecules. I. Native lysozyme and its constituent amino acids. J Mol Biol. 1970 Jun 14;50(2):509–524. doi: 10.1016/0022-2836(70)90208-1. [DOI] [PubMed] [Google Scholar]
- MacClement B. A., Carriere R. G., Phelps D. J., Carey P. R. Evidence for two acyl group conformations in some furylacryloyl- and thienylacryloylchymotrypsins: resonance Raman studies of enzyme--substrate intermediates at pH 3.0. Biochemistry. 1981 Jun 9;20(12):3438–3447. doi: 10.1021/bi00515a021. [DOI] [PubMed] [Google Scholar]
- Marcus M. A., Lewis A. Kinetic resonance Raman spectroscopy: dynamics of deprotonation of the Schiff base of bacteriorhodopsin. Science. 1977 Mar 25;195(4284):1328–1330. doi: 10.1126/science.841330. [DOI] [PubMed] [Google Scholar]
- Nakanishi M., Yamada T., Shimizu H., Tsuboi M. Fourier transform infrared absorption studies on the sulfhydryl groups in heavy meromyosin. Biochim Biophys Acta. 1981 Nov 30;671(1):99–103. doi: 10.1016/0005-2795(81)90099-4. [DOI] [PubMed] [Google Scholar]
- Oseroff A. R., Callender R. H. Resonance Raman spectroscopy of rhodopsin in retinal disk membranes. Biochemistry. 1974 Sep 24;13(20):4243–4248. doi: 10.1021/bi00717a027. [DOI] [PubMed] [Google Scholar]
- Ozaki Y., Pliura D. H., Carey P. R., Storer A. C. Vibrational spectra of scissile bonds in enzyme active sites: a resonance Raman study of dithioacylpapains. Biochemistry. 1982 Jun 22;21(13):3102–3108. doi: 10.1021/bi00256a011. [DOI] [PubMed] [Google Scholar]
- Pershina L., Hvidt A. A study by the hydrogen-exchange method of the complex formed between the basic pancreatic trypsin inhibitor and trypsin. Eur J Biochem. 1974 Oct 2;48(2):339–344. doi: 10.1111/j.1432-1033.1974.tb03774.x. [DOI] [PubMed] [Google Scholar]
- Petersen R. L., Li T. Y., McFarland J. T., Watters K. L. Determination of ionization state by resonance Raman spectroscopy Sulfonamide binding to carbonic anhydrase. Biochemistry. 1977 Feb 22;16(4):726–731. doi: 10.1021/bi00623a026. [DOI] [PubMed] [Google Scholar]
- Polgár L., Halász P. Current problems in mechanistic studies of serine and cysteine proteinases. Biochem J. 1982 Oct 1;207(1):1–10. doi: 10.1042/bj2070001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Porubcan R. S., Watters K. L., McFarland J. T. A laser Raman study of lysozyme denaturation. Arch Biochem Biophys. 1978 Mar;186(2):255–264. doi: 10.1016/0003-9861(78)90434-4. [DOI] [PubMed] [Google Scholar]
- RIEDER S. V., ROSE I. A. The mechanism of the triosephosphate isomerase reaction. J Biol Chem. 1959 May;234(5):1007–1010. [PubMed] [Google Scholar]
- Remba R. D., Champion P. M., Fitchen D. B., Chiang R., Hager L. P. Resonance Raman investigations of chloroperoxidase, horseradish peroxidase, and cytochrome c using Soret band laser excitation. Biochemistry. 1979 May 29;18(11):2280–2290. doi: 10.1021/bi00578a023. [DOI] [PubMed] [Google Scholar]
- Rudzki J. E., Peters K. S. Picosecond absorption studies on rhodopsin and isorhodopsin in detergent and native membrane. Biochemistry. 1984 Aug 14;23(17):3843–3848. doi: 10.1021/bi00312a008. [DOI] [PubMed] [Google Scholar]
- Rüegg M., Häni H. Infrared spectroscopy of the water vapor sorption process of caseins. Biochim Biophys Acta. 1975 Jul 21;400(1):17–23. doi: 10.1016/0005-2795(75)90122-1. [DOI] [PubMed] [Google Scholar]
- SCHONBAUM G. R., ZERNER B., BENDER M. L. The spectrophotometric determination of the operational normality of an alpha-chymotrypsin solution. J Biol Chem. 1961 Nov;236:2930–2935. [PubMed] [Google Scholar]
- Smith S. O., Myers A. B., Pardoen J. A., Winkel C., Mulder P. P., Lugtenburg J., Mathies R. Determination of retinal Schiff base configuration in bacteriorhodopsin. Proc Natl Acad Sci U S A. 1984 Apr;81(7):2055–2059. doi: 10.1073/pnas.81.7.2055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sorup P., Junager F., Hvidt A. Physicochemical studies of a branched polypeptide antigen: poly(L-Tyr,L-Glu)-poly(DL-Ala)--poly(L-Lys). Biochim Biophys Acta. 1977 Sep 27;494(1):9–18. doi: 10.1016/0005-2795(77)90130-1. [DOI] [PubMed] [Google Scholar]
- Spiro T. G., Burke J. M. Protein control of porphyrin conformation. Comparison of resonance Raman spectra of heme proteins with mesoporphyrin IX analogues. J Am Chem Soc. 1976 Sep 1;98(18):5482–5489. doi: 10.1021/ja00434a013. [DOI] [PubMed] [Google Scholar]
- Storer A. C., Lee H., Carey P. R. Relaxed and perturbed substrate conformations in enzyme active sites: evidence from multichannel resonance raman spectra. Biochemistry. 1983 Sep 27;22(20):4789–4796. doi: 10.1021/bi00289a027. [DOI] [PubMed] [Google Scholar]
- Storer A. C., Phelps D. J., Carey P. R. Resonance Raman and electronic absorption spectral studies of some beta-(2-furyl)acryloylglyceraldehyde-3-phosphate dehydrogenases. Biochemistry. 1981 Jun 9;20(12):3454–3461. doi: 10.1021/bi00515a023. [DOI] [PubMed] [Google Scholar]
- Stuchbury T., Shipton M., Norris R., Malthouse J. P., Brocklehurst K., Herbert J. A., Suschitzky H. A reporter group delivery system with both absolute and selective specificity for thiol groups and an improved fluorescent probe containing the 7-nitrobenzo-2-oxa-1,3-diazole moiety. Biochem J. 1975 Nov;151(2):417–432. doi: 10.1042/bj1510417. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Terner J., Hsieh C. L., Burns A. R., El-Sayed M. A. Time-resolved resonance Raman characterization of the bO640 intermediate of bacteriorhodopsin. Reprotonation of the Schiff base. Biochemistry. 1979 Aug 7;18(16):3629–3634. doi: 10.1021/bi00583a030. [DOI] [PubMed] [Google Scholar]
- Van Wart H. E., Lewis A., Scheraga H. A., Saeva F. D. Disulfide bond dihedral angles from Raman spectroscopy. Proc Natl Acad Sci U S A. 1973 Sep;70(9):2619–2623. doi: 10.1073/pnas.70.9.2619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Webb M. R., Knowles J. R. The existence of an electrophilic component in the reaction catalysed by triose phosphate isomerase. Biochem J. 1974 Aug;141(2):589–592. doi: 10.1042/bj1410589. [DOI] [PMC free article] [PubMed] [Google Scholar]