Abstract
1. We describe here the alterations in the nociceptive sensitivity of Swiss CD1 mice receiving an intraplantar (i.pl.) administration of XC Rous sarcoma-virus-transformed rat fibroblasts (XC cells).
2. Histological studies reveal that XC cells remain at the injection site 2–3 weeks after implantation, a time at which an inflammatory reaction is also detected. No tumoral growth was found and 5 weeks after inoculation neither XC cells nor inflammatory reaction were observed.
3. Measures to different types of noxious stimuli were performed. At week 1 after XC cell inoculation, hyperalgesia to thermal, but not mechanical, stimuli as well as to capsaicin injection is present in the implanted paw. At week 5 after XC cell implantation, only thermal hyperalgesia is present, and this enhanced reactivity persisted for even 25 weeks after the disappearance of XC tumoral cells.
4. Pharmacological studies on thermal hyperalgesia were conducted at two different stages, week 1 and week 5 after XC cell inoculation. The systemic administration of morphine (1–10 mg/kg i.p. (intraperitoneal); 30 min before testing) prevents this thermal hyperalgesic reaction both at week 1 and week 5. The endothelin type A (ETA) receptor antagonist BQ-123 (10 nmol; i.pl.; 90 min before testing) abolishes both the early (week 1) and the late (week 5) thermal hyperalgesia. In contrast, the selective endothelin type B (ETB) receptor antagonist, BQ-788 (10 nmol; i.pl.; 90 min before) abolishes thermal hyperalgesia only at week 1, but not at week 5 after XC cell inoculation.
5. It might be concluded that endothelins are probably involved in this type of long-term thermal hyperalgesia produced by the transitory presence of the XC tumoral cell line.
Keywords: tumoral cells, thermal hyperalgesia, mice, morphine, endothelins
REFERENCES
- Cain, D. M., Wacnik, P. W., and Simone, D. A. (2001). Animal models of cancer pain may reveal novel approaches to palliative care. Pain91: 1-4. [DOI] [PubMed] [Google Scholar]
- Carlton, S. M., and Coggeshall, R. E. (2001). Peripheral capsaicin receptors increase in the inflamed rat hindpaw: A possible mechanism for peripheral sensitisation. Neurosci. Lett.310: 53-56. [DOI] [PubMed] [Google Scholar]
- de Melo, J. D., Tonussi, C. R., D'Orleans-Juste, P., and Rae, G. A. (1998). Effects of endothelin-1 on inflammatory incapacitation of the rat knee joint. J. Cardiovasc. Pharmacol.31(Suppl. 1): S518-S520. [DOI] [PubMed] [Google Scholar]
- Griswold, D. E., Douglas, S. A., Martin, L. D., Davis, T. G., Davis, L., Ao, Z., Luttmann, M. A., Pullen, M., Nambi, P., Hay, D. W., and Ohlstein, E. H. (1999). Endothelin B receptor modulates inflammatory pain and cutaneous inflammation. Mol. Pharmacol.56: 807-812. [PubMed] [Google Scholar]
- Ihara, M., Ishikawa, K., Fukuroda, T., Saeki, T., Funabashi, K., Fukami, T., Suda, H., and Yano, M. J. (1992). In vitro biological profile of a highly potent novel endothelin (ET) antagonist BQ-123 selective for the ETA receptor. Cardiovasc. Pharmacol.20(Suppl. 12): S11-S114. [DOI] [PubMed] [Google Scholar]
- Ishikawa, K., Ihara, M., Noguchi, K., Mase, T., Mino, N., Saeki, T., Fukuroda, T., Fukami, T., Ozaki, S., and Nagase, T., Nishiskibe, M., and Yano, M. (1994). Biochemical and pharmacological profile of a potent and selective endothelin B-receptor antagonist, BQ-788. Proc. Natl. Acad. Sci. U.S.A.91: 4892-4896. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jarvis, M. F., Wessale, J. L., Zhu, C. Z., Lynch, J. J., Dayton, B. D., Calzadilla, S. V., Padley, R. J., Opgenorth, T. J., and Kowaluk E. A. (2000). ABT-627, an endothelin ET(A) receptor-selective antagonist, attenuates tactile allodynia in a diabetic rat model of neuropathic pain. Eur. J. Pharmacol.388: 29-35. [DOI] [PubMed] [Google Scholar]
- Kawabata, A., Nishimura, Y., and Takagi, H. (1992). L-Leucyl-L-arginine, naltrindole and D-arginine block antinociception elicited by L-arginine in mice with carrageenin-induced hyperalgesia. Br. J. Pharmacol.107: 1096-1101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kayser, V., Chen, Y. L., and Guilbaud, G. (1991) Behavioural evidence for a peripheral component in the enhanced antinociceptive effect of a low dose of systemic morphine in carrageenin-induced hyperalgesic rats. Brain Res.560: 237-244. [DOI] [PubMed] [Google Scholar]
- Lopshire J. C., and Nicol G. D. (1998). The cAMP transduction cascade mediates the prostaglandin E2 enhancement of the capsaicin-elicited current in rat sensory neurons: Whole-cell and single-channel studies. J. Neurosci.18: 6081-6092. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Medhurst, S. J., Walker, K., Bowes, M., Kidd, B. L., Glatt, M., Muller, M., Hattenberger, M., Vaxelaire, J., O'Reilly, T., Wotherspoon, G., Winter, J., Green, J., and Urban, L. (2002). A rat model of bone cancer pain. Pain96: 129-140. [DOI] [PubMed] [Google Scholar]
- Menéndez, L., Lastra, A., Fresno, M. F., Llames, S., Meana, A., Hidalgo, A., and Baamonde, A. (2003a). Initial thermal heat hypoalgesia and delayed hyperalgesia in a murine model of bone cancer pain. Brain Res.969: 102-109. [DOI] [PubMed] [Google Scholar]
- Menéndez, L., Lastra, A., Hidalgo, A., and Baamonde, A. (2002). Unilateral hot plate test: A simple and sensitive method for detecting central and peripheral hyperalgesia in mice. J. Neurosci. Methods113: 91-97. [DOI] [PubMed] [Google Scholar]
- Menéndez, L., Lastra, A., Hidalgo, A., and Baamonde, A. (2003b). Nociceptive reaction and thermal hyperalgesia induced by local ET-1 in mice: A behavioral and Fos study. Naunyn-Schmiedebergs Arch. Pharmacol.367: 28-34. [DOI] [PubMed] [Google Scholar]
- Randall, L. O., and Selitto, J. J. (1957). A method for measurement of analgesic activity on inflamed tissue. Arch. Int. Pharmacodyn.4: 409-419. [PubMed] [Google Scholar]
- Schwei, M. J., Honoré, P., Rogers, S. D., Salak-Johnson, J. L., Finke, M., Ramnaraine, M. L., Clohisy, D. R., and Mantyh P. W. (1999). Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain. J. Neurosci.19: 10886-10897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shin, J., Cho, H., Hwang, S. W., Jung, J., Shin, C. Y., Lee, S. Y., Kim, S. H., Lee, M. G., Choi, Y. H., Kim, J., Haber, N. A., Reichling, D. B., Khasar, S., Levine, J. D., and Oh, U. (2002). Bradykinin-12-lipoxygenase-VR1 signaling pathway for inflammatory hyperalgesia. Proc. Natl. Acad. Sci. U.S.A.99: 10150-10155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sugiura, T., Tominaga, M., Katsuya, H., and Mizumura, K. (2002). Bradykinin lowers the threshold temperature for heat activation of vanilloid receptor 1. J. Neurophysiol.88: 544-548. [DOI] [PubMed] [Google Scholar]
- Suzuki, K., and Yamada, S. (1994). Ascites sarcoma 180, a tumor associated with hypercalcemia, secretes potent bone-resorbing factors including transforming growth factor alpha, interleukin-1 alpha and interleukin-6. Bone Miner.27: 219-233. [DOI] [PubMed] [Google Scholar]
- Svoboda, J. (1966). Basic aspects of the interaction of oncogenic viruses with heterologous cells. Int. Rev. Exp. Pathol.5: 25-66. [PubMed] [Google Scholar]
- Tohda, C., Sasaki, M., Konemura, T., Sasamura, T., Itoh, M., and Kuraishi, Y. (2001). Axonal transport of VR1 capsaicin receptor mRNA in primary afferents and its participation in inflammation-induced increase in capsaicin sensitivity. J. Neurochem.76: 1628-1635. [DOI] [PubMed] [Google Scholar]
- Torg, J. S., Loughran, T., Pavlov, H., Schvamm, H., Gregg, J., Sherman, M., and Balduini, F. C. (1985). Osteoid osteoma. Distant, periarticular and subarticular lesions as a cause of knee pain. Sports Med.2: 296-304. [DOI] [PubMed] [Google Scholar]
- Wacnik, P. W., Eikmeyer, L. J., Ruggles, T. R., Walcheck, B. K., Beitz, A. J., and Wilcox, G. L. (2001). Functional interactions between tumor and peripheral nerve: Morphology, algogen identification, and behavioural characterization of a new murine model of cancer pain. J. Neurosci.21: 9355-9366. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wlodarski, K. H., and Reddi, H. A. (1987). Tumor cells stimulate in vivo periosteal bone formation. Bone Miner.2: 185-192. [PubMed] [Google Scholar]
- Zimmerman, M. (1983). Ethical guidelines for investigation of experimental pain in conscious animals. Pain116: 109-110. [DOI] [PubMed] [Google Scholar]
