Abstract
1. The effect of adenosine analogues and of nucleotides, alone or in combination, on intracellular calcium, accumulation of inositol (1,4,5) trisphosphate (InsP3), and on activation of protein kinase C (PKC) was studied in DDT1 MF2 cells derived from a Syrian hamster myosarcoma. These cells were found to express mRNA for A1 and some as yet unidentified P2Y receptor(s).
2. Activation of either receptor type stimulated the production of InsP3 and raised intracellular calcium in DDT1 MF2 cells. Similarly, the A1 selective agonist N6-cyclopentylade- nosine (CPA) increased PKC-dependent phosphorylation of the substrate MBP4–14 and induced a PKC translocation to the plasma membrane as determined using [3H]-phorbol dibutyrate (PDBu) binding in DDT1 MF-2 cells. However, neither adenosine nor CPA induced a significant translocation of transiently transfected γ-PKC-GFP from the cytosol to the cell membrane. In contrast to adenosine analogues, ATP and UTP also caused a rapid but transient translocation of γ-PKC-GFP and activation of PKC.
3. Doses of the A1 agonist CPA and of ATP or UTP per se caused barely detectable increases in intracellular Ca2+ but when combined, they caused an almost maximal stimulation. Similarly, adenosine (0.6 μM) and UTP (or ATP, 2.5 μM), which per se caused no detectable translocation of either γ- or ε-PKC-GFP, caused when combined a very clear-cut translocation of both PKC subforms, albeit with different time courses. These results show that simultaneous activation of P2Y and adenosine A1 receptors synergistically increases Ca2+ transients and translocation of PKC in DDT1 MF-2 cells. Since adenosine is rapidly formed by breakdown of extracellular ATP, such interactions may be biologically important.
Keywords: adenosine, nucleotides, PKC, smooth muscle, phospholipase
References
- Assender, J. W., Irenius, E., and Fredholm, B. B. (1996). Endothelin-1 causes a prolonged protein kinase C activation and acts as a co-mitogen in vascular smooth muscle cells. Acta Physiol. Scand. 157:451–460. [DOI] [PubMed] [Google Scholar]
- Assender, J. W., Kontny, E., and Fredholm, B. B. (1994). Expression of protein kinase C isoforms in smooth muscle cells in various states of differentiation. FEBS Lett. 342:76–80. [DOI] [PubMed] [Google Scholar]
- Birnbaumer, L. (1993). Heterotrimeric G proteins. Molecular diversity and functional correlates. J. Recept. Res. 13:19–26. [DOI] [PubMed] [Google Scholar]
- Borst, M. M. (1999). Blockade of A1 adenosine receptors prevents the ischaemia-induced sensitisation of adenylyl cyclase: Evidence for a protein kinase C-mediated pathway. Basic Res. Cardiol. 94:472–480. [DOI] [PubMed] [Google Scholar]
- Chen, C. C. (1997). P2Y receptor linked to phospholipase C: Stimulation of neuro 2A cells by UTP and ATP and possible regulation by protein kinase C subtype epsilon. J. Neurochem. 69:1409–1416. [DOI] [PubMed] [Google Scholar]
- Daly, J. W. (1997). Cyclic Nucleotides in the Nervous System, Plenum Press, New York. [Google Scholar]
- Den Hertog, A., Hoiting, B., Molleman, A., Van den Akker, J., Duin, M., and Nelemans, A. (1992). Calcium release from separate receptor-specific intracellular stores induced by histamine and ATP in a hamster cell line. J. Physiol. 454:591–607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dickenson, J. M., and Hill, S. J. (1993a). Adenosine A1-receptor stimulated increases in intracellular calcium in the smooth muscle cell line, DDT1 MF-2. Br. J. Pharmacol. 108:85–92. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dickenson, J. M., and Hill, S. J. (1993b). Intracellular cross-talk between receptors coupled to phospholipase C via pertussis toxin-sensitive and insensitive G-proteins in DDT1MF-2 cells. Br. J. Pharmacol. 109:719–724. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dickenson, J. M., and Hill, S. J. (1996). Synergistic interactions between human transfected adenosine A1 receptors and endogenous cholecystokinin receptors in CHO cells. Eur. J. Pharmacol. 302:141–151. [DOI] [PubMed] [Google Scholar]
- Dickenson, J. M., and Hill, S. J. (1998). Involvement of G-protein betagamma subunits in coupling the adenosine A1 receptor to phospholipase C in transfected CHO cells. Eur. J. Pharmacol. 355:85–93. [DOI] [PubMed] [Google Scholar]
- Feng, X. (2000). Regulation of receptor-mediated protein kinase C membrane trafficking by autophosphorylation. J. Biol. Chem. 275:17024–17034. [DOI] [PubMed] [Google Scholar]
- Fredholm, B. B., Abbracchio, M. P., Burnstock, G., Daly, J. W., Harden, T. K., Jacobson, K. A., Leff, P., and Williams, M. (1994). Nomenclature and classification of purinoceptors. Pharmacolog. Rev. 46:143–156. [PMC free article] [PubMed] [Google Scholar]
- Gautam, N., Northup, J., Tamir, H., and Simon, M. I. (1990). G protein diversity is increased by associations with a variety of gamma subunits. Proc. Natl. Acad. Sci. U.S.A. 87:7973–7977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerwins, P. (1993). Modification of a competitive protein binding assay for determination of inositol 1,4,5-trisphosphate. Anal. Biochem. 210:45–49. [DOI] [PubMed] [Google Scholar]
- Gerwins, P., and Fredholm, B. B. (1991). Glucocorticoid receptor activation leads to up-regulation of adenosine A1 receptors and down-regulation of adenosine A2 responses in DDT1 MF-2 smooth muscle cells. Mol. Pharmacol. 40:149–155. [PubMed] [Google Scholar]
- Gerwins, P., and Fredholm, B. B. (1992a). ATP and its metabolite adenosine act synergistically to mobilize intracellular calcium via the formation of inositol 1,4,5-trisphosphate in a smooth muscle cell line. J. Biol. Chem. 267:16081–16087. [PubMed] [Google Scholar]
- Gerwins, P., and Fredholm, B. B. (1992b). Stimulation of adenosine A1 receptors and bradykinin receptors, which act via different G-proteins, synergistically raises inositol 1,4,5-trisphosphate and intracellular free calcium in DDT1 MF-2 smooth muscle cells. Proc. Natl. Acad. Sci. U.S.A. 89:7330–7334. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerwins, P., and Fredholm, B. B. (1995a). Activation of adenosine A1 and bradykinin receptors increases protein kinase C and phospholipase D activity in smooth muscle cells. Naunyn-Schmiedebergs Arch. Pharmacol. 351:186–193. [DOI] [PubMed] [Google Scholar]
- Gerwins, P., and Fredholm, B. B. (1995b). Activation of phospholipase C and phospholipase D by stimulation of adenosine A1, bradykinin or P2U receptors does not correlate well with protein kinase C activation. Naunyn-Schmiedebergs Arch. Pharmacol. 351:194–201. [DOI] [PubMed] [Google Scholar]
- Gerwins, P., Nordstedt, C., and Fredholm, B. B. (1990). Characterization of adenosine A1 receptors in intact DDT1 MF-2 smooth muscle cells. Mol. Pharmacol. 38:660–666. [PubMed] [Google Scholar]
- Gho, B. C. (1997). Does protein kinase C play a pivotal role in the mechanisms of ischemic preconditioning? Cardiovasc. Drugs Ther. 10:775–786. [DOI] [PubMed] [Google Scholar]
- Grynkiewicz, G., Poenie, M., and Tsien, R. Y. (1985). A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260:3440–3450. [PubMed] [Google Scholar]
- Harden, T. K. (1992). G-protein-regulated phospholipase C. Identification of component proteins. Adv. Second Messenger Phosphoprotein Res. 26:11–34. [PubMed] [Google Scholar]
- Heasley, L. E., and Johnson, G. L. (1989). Regulation by protein kinase C of nerve growth factor, epidermal growth factor and phorbol esters in PC12 pheochromocytoma cells. J. Biol. Chem. 264:8646–8652. [PubMed] [Google Scholar]
- Henning, R. H., Duin, M., den Hertog, A., and Nelemans, A. (1993). Characterization of P2-purinoceptor mediated cyclic AMP formation in mouse C2C12 myotubes. Br. J. Pharmacol. 110:133–138. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henning, R. H., Nelemans, A., van den Akker, J., and den Hertog, A. (1992). The nucleotide receptors on mouse C2Cl2 myotubes. Br. J. Pharmacol. 106:853–858. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoiting, B., Molleman, A., Duin, M., den Hertog, A., and Nelemans, A. (1990). P2 purinoceptor-mediated inositol phosphate formation in relation to cytoplasmic calcium in DDT1 MF-2 smooth muscle cells. Eur. J. Pharmacol. 189:31–39. [DOI] [PubMed] [Google Scholar]
- Hollingsworth, E. B., and Daly, J. W. (1985). Accumulation of inositol phosphates and cyclic AMP in guinea-pig cerebral cortical preparations. Effects of norepinephrine, histamine, carbamylcholine and 2-chloroadenosine. Biochim. Biophys. Acta 847:207–216. [DOI] [PubMed] [Google Scholar]
- Ikonomidis, J. S. (1997). Preconditioning cultured human pediatric myocytes requires adenosine and protein kinase C. Am. J. Physiol. 272:H1220-H1230. [DOI] [PubMed] [Google Scholar]
- Kitajima, S., Ozaki, H., and Karaki, H. (1994). Role of different subtypes of P2 purinoceptor on cytosolic Ca2+ levels in rat aortic smooth muscle. Eur. J. Pharmacol., Mol. Pharmacol. Sect. 266:263–267. [DOI] [PubMed] [Google Scholar]
- Lee, S. B., Shin, S. H., Hepler, J. R., Gilman, A. G., and Rhee, S. G. (1993). Activation of phospholipase C-beta 2 mutants by G protein alpha q and beta gamma subunits. J. Biol. Chem. 268:25952–25957. [PubMed] [Google Scholar]
- Liang, B. T. (1998). Protein kinase C-dependent activation of KATP channel enhances adenosine-induced cardioprotection. Biochem. J. 336:337–343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maasch, C. (2000). Protein kinase C alpha targeting is regulated by temporal and spatial changes in intracellular free calcium concentration [Ca(2+)](i). FASEB J. 14:1653–1663. [DOI] [PubMed] [Google Scholar]
- Mubagwa, K. (2001). Adenosine, adenosine receptors and myocardial protection: An updated overview. Cardiovasc. Res. 52:25–39. [DOI] [PubMed] [Google Scholar]
- Nishizuka, Y. (1992). Intracellular signaling by hydrolysis of phopsholipids and activation of protein kinase C. Science 258:607–614. [DOI] [PubMed] [Google Scholar]
- Nordstedt, C. (1990). Synergism between phorbol ester and the Ca2+ ionophore A23187 on protein kinase C translocation, [3H]PDBu binding and adenosine A2-receptor activation in Jurkat cells. Eur. J. Pharmacol., Mol. Pharm. Sect. 188:349–357. [DOI] [PubMed] [Google Scholar]
- Norris, J. S., Gorski, J., and Kohler, P. O. (1974). Androgen receptors in a Syrian hamster ductus deferens tumor cell line. Nature 248:422–424. [DOI] [PubMed] [Google Scholar]
- O'Flaherty, J. T. (1990). Translocation of protein kinase C in human polymorphonuclear neutrophils. Regulation by cytosolic Ca2(+)-independent and Ca2(+)-dependent mechanisms. J. Biol. Chem. 265:9146–9152. [PubMed] [Google Scholar]
- Oancea, E. (1998). Protein kinase C as a molecular machine for decoding calcium and diacylglycerol signals. Saibo 95:307–318. [DOI] [PubMed] [Google Scholar]
- Oancea, E., Teruel, M. N., Quest, A. F., and Meyer, T. (1998). Green fluorescent protein (GFP)-tagged cysteine-rich domains from protein kinase C as fluorescent indicators for diacylglycerol signaling in living cells. J. Cell Biol. 140:485–498. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohmori, S., Shirai, Y., Sakai, N., Fujii, M., Konishi, H., Kikkawa, U., and Saito, N. (1998). Three distinct mechanisms for translocation and activation of the delta subspecies of protein kinase C. Mol. Cell. Biol. 18:5263–5271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quitterer, U., and Lohse, M. J. (1999). Crosstalk between G alpha(i)-and G alpha(q)-coupled receptors is mediated by G betagamma exchange. Proc. Natl. Acad. Sci. U.S.A. 96:10626–10631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reithmann, C., Gierschik, P., Werdan, K., and Jakobs, K. H. (1990). Hormonal regulation of Gi alpha level and adenylyl cyclase responsiveness. Br. J. Clin. Pharmacol. 30 (Suppl. 1):118S-120S. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saido, T. C., Mizuno, K., Konno, Y., Osada, S., Ohno, S., and Suzuki, K. (1992). Purification and characterization of protein kinase C epsilon from rabbit brain. Biochemistry 31:482–490. [DOI] [PubMed] [Google Scholar]
- Sakai, N., Sasaki, K., Ikegaki, N., Shirai, Y., Ono, Y., and Saito, N. (1997). Direct visualization of the translocation of the gamma-subspecies of protein kinase C in living cells using fusion proteins with green fluorescent protein. J. Cell Biol. 139:1465–1476. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schachter, J. B., Ivins, J. K., Pittman, R. N., and Wolfe, B. B. (1992). Competitive regulation of phospholipase C responses by cAMP and calcium. Mol. Pharmacol. 41:577–586. [PubMed] [Google Scholar]
- Schachter, J. B., and Wolfe, B. B. (1992). Cyclic AMP differentiates two separate but interacting pathways of phosphoinositide hydrolysis in the DDT1-MF2 smooth muscle cell line. Mol. Pharmacol. 41:587–597. [PubMed] [Google Scholar]
- Schachter, J. B., Yasuda, R. P., and Wolfe, B. B. (1995). Adenosine receptor activation potentiates phosphoinositide hydrolysis and arachidonic acid release in DDT1-MF2 cells: Putative interrelations. Cell. Signall. 7:659–668. [DOI] [PubMed] [Google Scholar]
- Shirai, Y., Kashiwagi, K., Yagi, K., Sakai, N., and Saito, N. (1998). Distinct effects of fatty acids on translocation of gamma-and epsilon-subspecies of protein kinase C. J. Cell Biol. 143:511–521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sternweis, P. C., and Smrcka, A. V. (1993). G proteins in signal transduction: The regulation of phospholipase C [Discussion]. Ciba Found. Symp. 176:96–106. [DOI] [PubMed] [Google Scholar]
- Trilivas, I., and Brown, J. H. (1989). Increases in intracellular Ca2+ regulate the binding of [3H]phorbol 12,13-dibutyrate to intact 1321N1 astrocytoma cells. J. Biol. Chem. 264:3102–3107. [PubMed] [Google Scholar]
- Van der Zee, L., Nelemans, A., and Den Hertog, A. (1992). Nucleotide receptors on DDT1 MF-2 vas deferens cells. Eur. J. Pharmacol. 215:317–320. [DOI] [PubMed] [Google Scholar]
- White, T. E., Dickenson, J. M., Alexander, S. P., and Hill, S. J. (1992). Adenosine A1-receptor stimulation of inositol phospholipid hydrolysis and calcium mobilisation in DDT1 MF-2 cells. Br. J. Pharmacol. 106:215–221. [DOI] [PMC free article] [PubMed] [Google Scholar]