Abstract
Clonal strains of rat pituitary tumour (GH4C1) cells are known to possess specific intracellular binding sites for calcitriol (1,25-dihydroxycholecalciferol, 1,25-dihydroxyvitamin D3). GH4C1 cells respond to calcitriol by a selective increase in prolactin(PRL)-gene expression. The interaction between calcitriol and glucocorticoids was studied by using this cultured-cell model. It was found that cortisol potently antagonized the induction of PRL mRNA and PRL production by calcitriol. The effects were concentration-dependent and were evident at glucocorticoid concentrations that did not alter basal PRL production. Inhibition was half-maximal at 3.2 nM-cortisol and 0.4 nM-dexamethasone. Calcitriol-induced PRL mRNA fell by more than 50% at 25 h and reached the control level 50 h after treatment with cortisol. The inhibition by cortisol of calcitriol induction of PRL production was selective when compared with effects on other inducers of PRL-gene expression [thyroliberin, epidermal growth factor and phorbol myristate acetate ('12-omicron-tetradecanoylphorbol 13-acetate')]. Potent antagonism by glucocorticoids of vitamin D action on specific gene expression has been demonstrated. Further studies with this cultured-cell model may help to explain the mechanism of this hormonal interaction, which assumes particular importance at major sites of vitamin D action such as the intestine.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bauer R. F., Arthur L. O., Fine D. L. Propagation of mouse mammary tumor cell lines and production of mouse mammary tumor virus in a serum-free medium. In Vitro. 1976 Aug;12(8):558–563. doi: 10.1007/BF02797439. [DOI] [PubMed] [Google Scholar]
- Benz E. J., Jr, Kretschmer P. J., Geist C. E., Kantor J. A., Turner P. H., Nienhuis A. W. Hemoglobin switching in sheep. Synthesis, cloning, and characterization of DNA sequences coding for the beta B, beta C, and gamma-globin mRNAs. J Biol Chem. 1979 Aug 10;254(15):6880–6888. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Chan S. D., Chiu D. K., Atkins D. Mechanism of the regulation of the 1 alpha,25-dihydroxyvitamin D3 receptor in the rat jejunum by glucocorticoids. J Endocrinol. 1984 Dec;103(3):295–300. doi: 10.1677/joe.0.1030295. [DOI] [PubMed] [Google Scholar]
- Clewell D. B., Helinski D. R. Supercoiled circular DNA-protein complex in Escherichia coli: purification and induced conversion to an opern circular DNA form. Proc Natl Acad Sci U S A. 1969 Apr;62(4):1159–1166. doi: 10.1073/pnas.62.4.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corradino R. A. Calcium-binding protein of intestine: induction by biologically significant cholecalciferol-like steroids in vitro. J Steroid Biochem. 1978 Dec;9(12):1183–1187. doi: 10.1016/0022-4731(78)90010-9. [DOI] [PubMed] [Google Scholar]
- Dannies P. S., Gautvik K. M., Tashjian A. H., Jr A possible role of cyclic AMP in mediating the effects of thyrotropin-releasing hormone on prolactin release and on prolactin and growth hormone synthesis in pituitary cells in culture. Endocrinology. 1976 May;98(5):1147–1159. doi: 10.1210/endo-98-5-1147. [DOI] [PubMed] [Google Scholar]
- Franceschi R. T., DeLuca H. F. Characterization of 1,25-dihydroxyvitamin D3-dependent calcium uptake in cultured embryonic chick duodenum. J Biol Chem. 1981 Apr 25;256(8):3840–3847. [PubMed] [Google Scholar]
- Gubbins E. J., Maurer R. A., Hartley J. L., Donelson J. E. Construction and analysis of recombinant DNAs containing a structural gene for rat prolactin. Nucleic Acids Res. 1979 Mar;6(3):915–930. doi: 10.1093/nar/6.3.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hahn T. J., Halstead L. R., Baran D. T. Effects off short term glucocorticoid administration on intestinal calcium absorption and circulating vitamin D metabolite concentrations in man. J Clin Endocrinol Metab. 1981 Jan;52(1):111–115. doi: 10.1210/jcem-52-1-111. [DOI] [PubMed] [Google Scholar]
- Haug E., Pedersen J. I., Gautvik K. M. Effects of vitamin D3 metabolites on production of prolactin and growth hormone in rat pituitary cells. Mol Cell Endocrinol. 1982 Sep;28(1):65–79. doi: 10.1016/0303-7207(82)90041-7. [DOI] [PubMed] [Google Scholar]
- Haussler M. R., Manolagas S. C., Deftos L. J. Evidence for a 1,25-dihydroxyvitamin D3 receptor-like macromolecule in rat pituitary. J Biol Chem. 1980 Jun 10;255(11):5007–5010. [PubMed] [Google Scholar]
- Haussler M. R., Pike J. W., Chandler J. S., Manolagas S. C., Deftos L. J. Molecular action of 1,25-dihydroxyvitamin D3: new cultured cell models. Ann N Y Acad Sci. 1981;372:502–517. doi: 10.1111/j.1749-6632.1981.tb15501.x. [DOI] [PubMed] [Google Scholar]
- Hirst M., Feldman D. Glucocorticoid regulation of 1,25(OH)2vitamin D3 receptors: divergent effects on mouse and rat intestine. Endocrinology. 1982 Oct;111(4):1400–1402. doi: 10.1210/endo-111-4-1400. [DOI] [PubMed] [Google Scholar]
- Klein R. G., Arnaud S. B., Gallagher J. C., Deluca H. F., Riggs B. L. Intestinal calcium absorption in exogenous hypercortisonism. Role of 25-hydroxyvitamin D and corticosteroid dose. J Clin Invest. 1977 Jul;60(1):253–259. doi: 10.1172/JCI108762. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murdoch G. H., Rosenfeld M. G. Regulation of pituitary function and prolactin production in the GH4 cell line by vitamin D. J Biol Chem. 1981 Apr 25;256(8):4050–4053. [PubMed] [Google Scholar]
- Norman A. W., Roth J., Orci L. The vitamin D endocrine system: steroid metabolism, hormone receptors, and biological response (calcium binding proteins). Endocr Rev. 1982 Fall;3(4):331–366. doi: 10.1210/edrv-3-4-331. [DOI] [PubMed] [Google Scholar]
- Osborne R., Tashjian A. H., Jr Tumor-promoting phorbol esters affect production of prolactin and growth hormone by rat pituitary cells. Endocrinology. 1981 Apr;108(4):1164–1170. doi: 10.1210/endo-108-4-1164. [DOI] [PubMed] [Google Scholar]
- Schonbrunn A., Krasnoff M., Westendorf J. M., Tashjian A. H., Jr Epidermal growth factor and thyrotropin-releasing hormone act similarly on a clonal pituitary cell strain. Modulation of hormone production and inhbition of cell proliferation. J Cell Biol. 1980 Jun;85(3):786–797. doi: 10.1083/jcb.85.3.786. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seeman E., Kumar R., Hunder G. G., Scott M., Heath H., 3rd, Riggs B. L. Production, degradation, and circulating levels of 1,25-dihydroxyvitamin D in health and in chronic glucocorticoid excess. J Clin Invest. 1980 Oct;66(4):664–669. doi: 10.1172/JCI109902. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tashjian A. H., Jr, Bancroft F. C., Levine L. Production of both prolactin and growth hormone by clonal strains of rat pituitary tumor cells. Differential effects of hydrocortisone and tissue extracts. J Cell Biol. 1970 Oct;47(1):61–70. doi: 10.1083/jcb.47.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tashjian A. H., Jr, Osborne R., Maina D., Knaian A. Hydrocortisone increases the number of receptors for thyrotropin-releasing hormone on pituitary cells in culture. Biochem Biophys Res Commun. 1977 Nov 7;79(1):333–340. doi: 10.1016/0006-291x(77)90100-0. [DOI] [PubMed] [Google Scholar]
- Wark J. D., Tashjian A. H., Jr Regulation of prolactin mRNA by 1,25-dihydroxyvitamin D3 in GH4C1 cells. J Biol Chem. 1983 Oct 25;258(20):12118–12121. [PubMed] [Google Scholar]
- Wark J. D., Tashjian A. H., Jr Vitamin D stimulates prolactin synthesis by GH4C1 cells incubated in chemically defined medium. Endocrinology. 1982 Nov;111(5):1755–1757. doi: 10.1210/endo-111-5-1755. [DOI] [PubMed] [Google Scholar]
- White B. A., Bancroft F. C. Cytoplasmic dot hybridization. Simple analysis of relative mRNA levels in multiple small cell or tissue samples. J Biol Chem. 1982 Aug 10;257(15):8569–8572. [PubMed] [Google Scholar]
