Abstract
The bacterium Wolinella succinogenes produces a nitrite reductase enzyme that can be purified to homogeneity in high yield by a combination of detergent extraction, hydroxyapatite chromatography and Mr fractionation. Nitrite reductase activity is found to be present in both a high- and a low-Mr fraction. The high-Mr fraction has been shown to consist of the low-Mr nitrite reductase enzyme associated with a hydrophobic 'binding protein'. The amino acid composition for both proteins is reported. The nitrite reductase enzyme shows spectral characteristics indicative of the presence of c-type haem groups. Measurements at 610 nm indicate the presence of some high-spin haem groups at neutral pH. This haem subgroup undergoes a pH-linked high-spin - low-spin transition at alkaline pH. Approximately two of the six haem groups present within the enzyme bind CO with low affinity (KD = 0.4 mM). The enzyme also shows a range of redox activities with various inorganic reagents. The enzyme has been shown to exhibit dithionite reductase, oxygen reductase and CO2 reductase activities.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bickar D., Bonaventura C., Bonaventura J. Carbon monoxide-driven reduction of ferric heme and heme proteins. J Biol Chem. 1984 Sep 10;259(17):10777–10783. [PubMed] [Google Scholar]
- Brittain T., Greenwood C. A comparative study of some kinetic and spectral properties of guanidinated and native cytochrome c. Biochem J. 1975 Apr;147(1):175–177. doi: 10.1042/bj1470175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CHANCE B. Spectrophotometry of intracellular respiratory pigments. Science. 1954 Nov 12;120(3124):767–775. doi: 10.1126/science.120.3124.767. [DOI] [PubMed] [Google Scholar]
- HORIO T., HIGASHI T., MATSUBARA H., KUSAI K., NAKAI M., OKUNUKI K. High purification and properties of Pseudomonas cytochrome oxidase. Biochim Biophys Acta. 1958 Aug;29(2):297–302. doi: 10.1016/0006-3002(58)90188-4. [DOI] [PubMed] [Google Scholar]
- Heinrikson R. L., Meredith S. C. Amino acid analysis by reverse-phase high-performance liquid chromatography: precolumn derivatization with phenylisothiocyanate. Anal Biochem. 1984 Jan;136(1):65–74. doi: 10.1016/0003-2697(84)90307-5. [DOI] [PubMed] [Google Scholar]
- Hunkapiller M. W., Lujan E., Ostrander F., Hood L. E. Isolation of microgram quantities of proteins from polyacrylamide gels for amino acid sequence analysis. Methods Enzymol. 1983;91:227–236. doi: 10.1016/s0076-6879(83)91019-4. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lambeth D. O., Campbell K. L., Zand R., Palmer G. The appearance of transient species of cytochrome c upon rapid oxidation or reduction at alkaline pH. J Biol Chem. 1973 Dec 10;248(23):8130–8136. [PubMed] [Google Scholar]
- Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
- Steenkamp D. J., Peck H. D., Jr The association of hydrogenase and dithionite reductase activities with the nitrite reductase of Desulfovibrio desulfuricans. Biochem Biophys Res Commun. 1980 May 14;94(1):41–48. doi: 10.1016/s0006-291x(80)80184-7. [DOI] [PubMed] [Google Scholar]
- WOLIN M. J., WOLIN E. A., JACOBS N. J. Cytochrome-producing anaerobic Vibrio succinogenes, sp. n. J Bacteriol. 1961 Jun;81:911–917. doi: 10.1128/jb.81.6.911-917.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
