Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1986 Jan 15;233(2):571–576. doi: 10.1042/bj2330571

Is the availability of substrate for the tricarboxylic acid cycle a limiting factor for uncoupled respiration in sycamore (Acer pseudoplatanus) cells?

E P Journet, R Bligny, R Douce
PMCID: PMC1153064  PMID: 3954754

Abstract

Protoplasts obtained from sycamore (Acer pseudoplatanus) cell suspensions were found to be highly intact and to retain a high rate of O2 consumption. If the protoplasts were taken up and expelled through a fine nylon mesh, all the protoplasts were ruptured, leaving the fragile amyloplasts largely intact. Distribution of enzymes of glycolysis in plastids and soluble phase of sycamore protoplasts indicated that the absolute maximum activity for each glycolytic enzyme under optimum conditions exceeded the estimates of the maximal rate at which sycamore cells oxidize triose phosphate. Passage of protoplasts through the fine nylon mesh produced a 3-5-fold decrease in O2 consumption. However, addition of saturating amounts of respiratory substrates and ADP restored an O2 consumption equal to that observed with uncoupled intact protoplasts. Taken together, these results demonstrated that neither the overall capacity of the glycolytic enzymes in sycamore cells nor the availability of respiratory substrates for the mitochondria is ultimately responsible for determining the rate of uncoupled respiration in sycamore cells.

Full text

PDF
571

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ap Rees T., Thomas S. M., Fuller W. A., Chapman B. Location of gluconeogenesis from phosphoenolpyruvate in cotyledons of Cucurbita pepo. Biochim Biophys Acta. 1975 Mar 14;385(1):145–156. doi: 10.1016/0304-4165(75)90082-3. [DOI] [PubMed] [Google Scholar]
  2. Bligny R., Douce R. Excretion of laccase by sycamore (Acer pseudoplatanus L.) cells. Purification and properties of the enzyme. Biochem J. 1983 Feb 1;209(2):489–496. doi: 10.1042/bj2090489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bligny R. Growth of Suspension-cultured Acer pseudoplatanus L. Cells in Automatic Culture Units of Large Volume. Plant Physiol. 1977 Mar;59(3):502–505. doi: 10.1104/pp.59.3.502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carnal N. W., Black C. C. Phosphofructokinase activities in photosynthetic organisms : the occurrence of pyrophosphate-dependent 6-phosphofructokinase in plants and algae. Plant Physiol. 1983 Jan;71(1):150–155. doi: 10.1104/pp.71.1.150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carnal N. W., Black C. C. Pyrophosphate-dependent 6-phosphofructokinase, a new glycolytic enzyme in pineapple leaves. Biochem Biophys Res Commun. 1979 Jan 15;86(1):20–26. doi: 10.1016/0006-291x(79)90376-0. [DOI] [PubMed] [Google Scholar]
  6. Duggleby R. G., Dennis D. T. The characterization and regulatory properties of pyruvate kinase from cotton seeds. Arch Biochem Biophys. 1973 Apr;155(2):270–277. doi: 10.1016/0003-9861(73)90115-x. [DOI] [PubMed] [Google Scholar]
  7. Givan C. V., Torrey J. G. Respiratory Response of Acer pseudoplatanus Cells to Pyruvate and 2,4-Dinitrophenol. Plant Physiol. 1968 Apr;43(4):635–640. doi: 10.1104/pp.43.4.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kelly G. J., Latzko E. Chloroplast Phosphofructokinase: II. Partial Purification, Kinetic and Regulatory Properties. Plant Physiol. 1977 Aug;60(2):295–299. doi: 10.1104/pp.60.2.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lin W. Responses of corn root protoplasts to exogenous reduced nicotinamide adenine dinucleotide: Oxygen consumption, ion uptake, and membrane potential. Proc Natl Acad Sci U S A. 1982 Jun;79(12):3773–3776. doi: 10.1073/pnas.79.12.3773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Martin J. B., Bligny R., Rebeille F., Douce R., Leguay J. J., Mathieu Y., Guern J. A P Nuclear Magnetic Resonance Study of Intracellular pH of Plant Cells Cultivated in Liquid Medium. Plant Physiol. 1982 Oct;70(4):1156–1161. doi: 10.1104/pp.70.4.1156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Miernyk J. A., Dennis D. T. Mitochondrial, plastid, and cytosolic isozymes of hexokinase from developing endosperm of Ricinus communis. Arch Biochem Biophys. 1983 Oct 15;226(2):458–468. doi: 10.1016/0003-9861(83)90315-6. [DOI] [PubMed] [Google Scholar]
  12. Neuburger M., Journet E. P., Bligny R., Carde J. P., Douce R. Purification of plant mitochondria by isopycnic centrifugation in density gradients of Percoll. Arch Biochem Biophys. 1982 Aug;217(1):312–323. doi: 10.1016/0003-9861(82)90507-0. [DOI] [PubMed] [Google Scholar]
  13. Nishimura M., Douce R., Akazawa T. Isolation and characterization of metabolically competent mitochondria from spinach leaf protoplasts. Plant Physiol. 1982 Apr;69(4):916–920. doi: 10.1104/pp.69.4.916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Preiss J., Okita T. W., Greenberg E. Characterization of the spinach leaf phosphorylases. Plant Physiol. 1980 Nov;66(5):864–869. doi: 10.1104/pp.66.5.864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rebeille F., Bligny R., Douce R. Is the cytosolic pi concentration a limiting factor for plant cell respiration? Plant Physiol. 1984 Feb;74(2):355–359. doi: 10.1104/pp.74.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sabularse D. C., Anderson R. L. D-Fructose 2,6-bisphosphate: a naturally occurring activator for inorganic pyrophosphate:D-fructose-6-phosphate 1-phosphotransferase in plants. Biochem Biophys Res Commun. 1981 Dec 15;103(3):848–855. doi: 10.1016/0006-291x(81)90888-3. [DOI] [PubMed] [Google Scholar]
  17. Scopes R. K. 3-phosphoglycerate kinase of skeletal muscle. Methods Enzymol. 1975;42:127–134. doi: 10.1016/0076-6879(75)42105-x. [DOI] [PubMed] [Google Scholar]
  18. Simcox P. D., Reid E. E., Canvin D. T., Dennis D. T. Enzymes of the Glycolytic and Pentose Phosphate Pathways in Proplastids from the Developing Endosperm of Ricinus communis L. Plant Physiol. 1977 Jun;59(6):1128–1132. doi: 10.1104/pp.59.6.1128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Van Schaftingen E., Lederer B., Bartrons R., Hers H. G. A kinetic study of pyrophosphate: fructose-6-phosphate phosphotransferase from potato tubers. Application to a microassay of fructose 2,6-bisphosphate. Eur J Biochem. 1982 Dec;129(1):191–195. doi: 10.1111/j.1432-1033.1982.tb07039.x. [DOI] [PubMed] [Google Scholar]
  20. Wong K. F., Davies D. D. Regulation of phosphoenolpyruvate carboxylase of Zea mays by metabolites. Biochem J. 1973 Mar;131(3):451–458. doi: 10.1042/bj1310451. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES