Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1986 Feb 1;233(3):763–772. doi: 10.1042/bj2330763

Preliminary evidence for a processing error in the biosynthesis of Gaucher activator in mucolipidosis disease types II and III.

E Ranieri, B Paton, A Poulos
PMCID: PMC1153097  PMID: 3518703

Abstract

Activator protein (AP), which stimulated fibroblast sphingomyelinase activity, was isolated from the spleen of a patient with Gaucher's disease type I by the combined techniques of heat and alcohol denaturation, DEAE-cellulose column chromatography, gel filtration, preparative polyacrylamide-gel electrophoresis and decyl-agarose chromatography. Urea/sodium dodecyl sulphate (SDS)/polyacrylamide-gel electrophoresis showed two bands, one with an Mr of approx. 3,000 and the other with an Mr of 5,000-6,500. Similarly, SDS/polyacrylamide-gel electrophoresis performed in the absence of urea revealed the presence of two components, one of which adsorbed to a concanavalin A (Con A) column. Both components stimulated sphingomyelinase activity. On a non-denaturing polyacrylamide gel containing Triton X-100, four major components, two of which bound to Con A, were detected with the dye Stains-All. Cross-reacting material (CRM) to polyclonal Gaucher spleen AP antibodies was detected in normal fibroblasts and in fibroblasts from patients with sphingomyelinase and beta-glucocerebrosidase deficiency states (Niemann-Pick and Gaucher's diseases respectively). CRM in normal fibroblasts adsorbed to Con A columns and had the same mobility on SDS/polyacrylamide-gel electrophoresis as Con A-adsorbing Gaucher spleen AP. Normal AP was not observed in mucolipidosis type II (I-cell disease) fibroblasts; instead, extracts from these cells revealed the presence of two closely migrating bands with higher Mr values than normal fibroblast CRM. Furthermore, extracts of media from I-cell fibroblast cultures, but not from control or Gaucher fibroblast cultures, contained AP activity towards sphingomyelinase and beta-glucocerebrosidase. Fibroblasts from a patient with mucolipidosis type III (pseudo-Hurler polydystrophy) showed an intermediate pattern consisting of normal as well as the higher-Mr CRM. Our data provide evidence for the existence of AP in cultured skin fibroblasts and suggest that these proteins may be targetted to the lysosome by post-translational modification in a similar manner to that reported for lysosomal enzymes.

Full text

PDF
763

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berent B. L., Radin N. S. beta-Glucosidase activator protein from bovine spleen ("coglucosidase"). Arch Biochem Biophys. 1981 Apr 15;208(1):248–260. doi: 10.1016/0003-9861(81)90147-8. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
  4. Chiao Y. B., Chambers J. P., Glew R. H., Lee R. E., Wenger D. A. Subcellular localization of the heat-stable glucocerebrosidase activator substance in Gaucher spleen. Arch Biochem Biophys. 1978 Feb;186(1):42–51. doi: 10.1016/0003-9861(78)90461-7. [DOI] [PubMed] [Google Scholar]
  5. Christomanou H., Kleinschmidt T. Isolation of two forms of an activator protein for the enzymic sphingomyelin degradation from human Gaucher spleen. Biol Chem Hoppe Seyler. 1985 Mar;366(3):245–256. doi: 10.1515/bchm3.1985.366.1.245. [DOI] [PubMed] [Google Scholar]
  6. Christomanou H. Niemann-Pick disease, Type C: evidence for the deficiency of an activating factor stimulating sphingomyelin and glucocerebroside degradation. Hoppe Seylers Z Physiol Chem. 1980 Oct;361(10):1489–1502. doi: 10.1515/bchm2.1980.361.2.1489. [DOI] [PubMed] [Google Scholar]
  7. Conzelmann E., Sandhoff K. AB variant of infantile GM2 gangliosidosis: deficiency of a factor necessary for stimulation of hexosaminidase A-catalyzed degradation of ganglioside GM2 and glycolipid GA2. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3979–3983. doi: 10.1073/pnas.75.8.3979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Conzelmann E., Sandhoff K. Purification and characterization of an activator protein for the degradation of glycolipids GM2 and GA2 by hexosaminidase A. Hoppe Seylers Z Physiol Chem. 1979 Dec;360(12):1837–1849. doi: 10.1515/bchm2.1979.360.2.1837. [DOI] [PubMed] [Google Scholar]
  9. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  10. Fischer G., Jatzkewitz H. The activator of cerebroside-sulphatase. A model of the activation. Biochim Biophys Acta. 1978 Jan 27;528(1):69–76. doi: 10.1016/0005-2760(78)90053-x. [DOI] [PubMed] [Google Scholar]
  11. Fujibayashi S., Wenger D. A. Studies on a sphingolipid activator protein (SAP-2) in fibroblasts from patients with lysosomal storage diseases, including Niemann-Pick disease Type C. Clin Chim Acta. 1985 Mar 15;146(2-3):147–156. doi: 10.1016/0009-8981(85)90053-1. [DOI] [PubMed] [Google Scholar]
  12. GOLDSTEIN I. J., HOLLERMAN C. E., SMITH E. E. PROTEIN-CARBOHYDRATE INTERACTION. II. INHIBITION STUDIES ON THE INTERACTION OF CONCANAVALIN A WITH POLYSACCHARIDES. Biochemistry. 1965 May;4:876–883. doi: 10.1021/bi00881a013. [DOI] [PubMed] [Google Scholar]
  13. Green M. R., Pastewka J. V., Peacock A. C. Differential staining of phosphoproteins on polyacrylamide gels with a cationic carbocyanine dye. Anal Biochem. 1973 Nov;56(1):43–51. doi: 10.1016/0003-2697(73)90167-x. [DOI] [PubMed] [Google Scholar]
  14. Hasilik A., Klein U., Waheed A., Strecker G., von Figura K. Phosphorylated oligosaccharides in lysosomal enzymes: identification of alpha-N-acetylglucosamine(1)phospho(6)mannose diester groups. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7074–7078. doi: 10.1073/pnas.77.12.7074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hasilik A., Neufeld E. F. Biosynthesis of lysosomal enzymes in fibroblasts. Synthesis as precursors of higher molecular weight. J Biol Chem. 1980 May 25;255(10):4937–4945. [PubMed] [Google Scholar]
  16. Hechtman P., Gordon B. A., Ng Ying Kin N. M. Deficiency of the hexosaminidase A activator protein in a case of GM2 gangliosidosis; variant AB. Pediatr Res. 1982 Mar;16(3):217–222. doi: 10.1203/00006450-198203000-00011. [DOI] [PubMed] [Google Scholar]
  17. Hjelm H., Hjelm K., Sjöquist J. Protein A from Staphylococcus aureus. Its isolation by affinity chromatography and its use as an immunosorbent for isolation of immunoglobulins. FEBS Lett. 1972 Nov 15;28(1):73–76. doi: 10.1016/0014-5793(72)80680-x. [DOI] [PubMed] [Google Scholar]
  18. Ho M. W. Identity of 'acid' beta-glucosidase and glucocerebrosidase in human spleen. Biochem J. 1973 Nov;136(3):721–729. doi: 10.1042/bj1360721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ho M. W., O'Brien J. S. Gaucher's disease: deficiency of 'acid' -glucosidase and reconstitution of enzyme activity in vitro. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2810–2813. doi: 10.1073/pnas.68.11.2810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Inui K., Emmett M., Wenger D. A. Immunological evidence for deficiency in an activator protein for sulfatide sulfatase in a variant form of metachromatic leukodystrophy. Proc Natl Acad Sci U S A. 1983 May;80(10):3074–3077. doi: 10.1073/pnas.80.10.3074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Inui K., Wenger D. A. Biochemical, immunological, and structural studies on a sphingolipid activator protein (SAP-1). Arch Biochem Biophys. 1984 Sep;233(2):556–564. doi: 10.1016/0003-9861(84)90479-x. [DOI] [PubMed] [Google Scholar]
  22. Inui K., Wenger D. A. Concentrations of an activator protein for sphingolipid hydrolysis in liver and brain samples from patients with lysosomal storage diseases. J Clin Invest. 1983 Nov;72(5):1622–1628. doi: 10.1172/JCI111121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Iyer S. S., Berent S. L., Radin N. S. The cohydrolases in human spleen that stimulate glucosyl ceramide beta-glucosidase. Biochim Biophys Acta. 1983 Oct 17;748(1):1–7. doi: 10.1016/0167-4838(83)90020-1. [DOI] [PubMed] [Google Scholar]
  24. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  25. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  26. Li S. C., Hirabayashi Y., Li Y. T. A new variant of type-AB GM2-gangliosidosis. Biochem Biophys Res Commun. 1981 Jul 30;101(2):479–485. doi: 10.1016/0006-291x(81)91285-7. [DOI] [PubMed] [Google Scholar]
  27. Li S. C., Li Y. T. An activator stimulating the enzymic hydrolysis of sphingoglycolipids. J Biol Chem. 1976 Feb 25;251(4):1159–1163. [PubMed] [Google Scholar]
  28. Merril C. R., Goldman D., Sedman S. A., Ebert M. H. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science. 1981 Mar 27;211(4489):1437–1438. doi: 10.1126/science.6162199. [DOI] [PubMed] [Google Scholar]
  29. Poulos A., Ranieri E., Shankaran P., Callahan J. W. Studies on the activation of the enzymatic hydrolysis of sphingomyelin liposomes. Biochim Biophys Acta. 1984 Apr 18;793(2):141–148. doi: 10.1016/0005-2760(84)90315-1. [DOI] [PubMed] [Google Scholar]
  30. Reitman M. L., Kornfeld S. Lysosomal enzyme targeting. N-Acetylglucosaminylphosphotransferase selectively phosphorylates native lysosomal enzymes. J Biol Chem. 1981 Dec 10;256(23):11977–11980. [PubMed] [Google Scholar]
  31. Robey P. G., Neufeld E. F. Defective phosphorylation and processing of beta-hexosaminidase by intact cultured fibroblasts from patients with mucolipidosis III. Arch Biochem Biophys. 1982 Jan;213(1):251–257. doi: 10.1016/0003-9861(82)90459-3. [DOI] [PubMed] [Google Scholar]
  32. Shapiro L. J., Aleck K. A., Kaback M. M., Itabashi H., Desnick R. J., Brand N., Stevens R. L., Fluharty A. L., Kihara H. Metachromatic leukodystrophy without arylsulfatase A deficiency. Pediatr Res. 1979 Oct;13(10):1179–1181. doi: 10.1203/00006450-197910000-00021. [DOI] [PubMed] [Google Scholar]
  33. Swank R. T., Munkres K. D. Molecular weight analysis of oligopeptides by electrophoresis in polyacrylamide gel with sodium dodecyl sulfate. Anal Biochem. 1971 Feb;39(2):462–477. doi: 10.1016/0003-2697(71)90436-2. [DOI] [PubMed] [Google Scholar]
  34. Varon R., Kleijer W. J., Thompson E. J., d'Azzo A. Evidence for the deficiency of beta-glucosidase-activating factor in fibroblasts of patients with I-cell disease. Hum Genet. 1982;62(1):66–69. doi: 10.1007/BF00295605. [DOI] [PubMed] [Google Scholar]
  35. Wenger D. A., Sattler M., Roth S. A protein activator of galactosylceramide beta-galactosidase. Biochim Biophys Acta. 1982 Sep 14;712(3):639–649. doi: 10.1016/0005-2760(82)90293-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES