Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Biochemical Journal logoLink to Biochemical Journal
. 1986 Feb 1;233(3):865–870. doi: 10.1042/bj2330865

Glucose-stimulated sequestration of Ca2+ in clonal insulin-releasing cells. Evidence for an opposing effect of muscarinic-receptor activation.

E Gylfe, B Hellman
PMCID: PMC1153109  PMID: 3010944

Abstract

Net fluxes of Ca2+ and acid production were studied in clonal insulin-releasing cells (RINm5F) by using colour indicators and dual-wavelength spectrophotometry. After equilibration with a medium containing 10-20 microM-Ca2+, only minimal amounts of Ca2+ (0.08 mmol/kg of protein) were released from the cells by subsequent additions of the respiratory blocker antimycin A and the Ca2+ ionophore A23187. The presence of 20 mM-glucose resulted in an almost 5-fold increase of the acid production and in a stimulated net uptake of Ca2+. The latter process was independent of the extracellular Ca2+ concentration and reached saturation after 20 +/- 1 min, when it corresponded to 1.18 +/- 0.07 mmol of calcium/kg of protein. Whereas the thiol reagent iodoacetamide suppressed the acid production, interference with mitochondrial function by using antimycin A or the uncoupler carbonyl cyanide m-chlorophenylhydrazone had the opposite effect. The latter two drugs induced a selective release of Ca2+ from a pool containing 35% of that taken up during glucose exposure. Most of the remaining Ca2+ was liberated by A23187 or iodoacetamide. Carbamoylcholine was also selective in mobilizing glucose-stimulated calcium, but this calcium (17%) appeared to originate from the pool insensitive to mitochondrial poisons. The action of carbamoylcholine was blocked by atropine and did not depend on the presence of extracellular Na+. The opposite effects of glucose and muscarinic-receptor activation on a non-mitochondrial calcium pool are consistent with participation of the endoplasmic reticulum in the glucose-induced sequestration of Ca2+ in pancreatic beta-cells.

Full text

PDF
865

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahamsson H., Berggren P. O., Hellman B. Mobilization of 45Ca from insulin-producing RINm5F cells attached to microcarriers. Am J Physiol. 1984 Dec;247(6 Pt 1):E719–E725. doi: 10.1152/ajpendo.1984.247.6.E719. [DOI] [PubMed] [Google Scholar]
  2. Andersson T., Berggren P. O., Gylfe E., Hellman B. Amounts and distribution of intracellular magnesium and calcium in pancreatic beta-cells. Acta Physiol Scand. 1982 Feb;114(2):235–241. doi: 10.1111/j.1748-1716.1982.tb06977.x. [DOI] [PubMed] [Google Scholar]
  3. Andersson T. Glucose-induced retention of intracellular 45Ca in pancreatic islets. Am J Physiol. 1983 Nov;245(5 Pt 1):C343–C347. doi: 10.1152/ajpcell.1983.245.5.C343. [DOI] [PubMed] [Google Scholar]
  4. Bellomo G., Jewell S. A., Thor H., Orrenius S. Regulation of intracellular calcium compartmentation: studies with isolated hepatocytes and t-butyl hydroperoxide. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6842–6846. doi: 10.1073/pnas.79.22.6842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berridge M. J., Irvine R. F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature. 1984 Nov 22;312(5992):315–321. doi: 10.1038/312315a0. [DOI] [PubMed] [Google Scholar]
  6. Best L., Malaisse W. J. Nutrient and hormone-neurotransmitter stimuli induce hydrolysis of polyphosphoinositides in rat pancreatic islets. Endocrinology. 1984 Nov;115(5):1814–1820. doi: 10.1210/endo-115-5-1814. [DOI] [PubMed] [Google Scholar]
  7. Best L., Malaisse W. J. Stimulation of phosphoinositide breakdown in rat pancreatic islets by glucose and carbamylcholine. Biochem Biophys Res Commun. 1983 Oct 14;116(1):9–16. doi: 10.1016/0006-291x(83)90373-x. [DOI] [PubMed] [Google Scholar]
  8. Biden T. J., Prentki M., Irvine R. F., Berridge M. J., Wollheim C. B. Inositol 1,4,5-trisphosphate mobilizes intracellular Ca2+ from permeabilized insulin-secreting cells. Biochem J. 1984 Oct 15;223(2):467–473. doi: 10.1042/bj2230467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chance B., Legallais V., Sorge J., Graham N. A versatile time-sharing multichannel spectrophotometer, reflectometer, and fluorometer. Anal Biochem. 1975 Jun;66(2):498–514. doi: 10.1016/0003-2697(75)90617-x. [DOI] [PubMed] [Google Scholar]
  10. Clements R. S., Jr, Rhoten W. B. Phosphoinositide metabolism and insulin secretion from isolated rat pancreatic islets. J Clin Invest. 1976 Mar;57(3):684–691. doi: 10.1172/JCI108325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fex G., Lernmark A. Effect of D-glucose on the incorporation of 32P into phospholipids of mouse pancreatic islets. FEBS Lett. 1972 Sep 15;25(2):287–291. doi: 10.1016/0014-5793(72)80505-2. [DOI] [PubMed] [Google Scholar]
  12. Freinkel N., El Younsi C., Dawson M. C. Inter-relations between the phospholipids of rat pancreatic islets during glucose stimulation, and their response to medium inositol and tetracaine. Eur J Biochem. 1975 Nov 1;59(1):245–252. doi: 10.1111/j.1432-1033.1975.tb02448.x. [DOI] [PubMed] [Google Scholar]
  13. Gagerman E., Idahl L. A., Meissner H. P., Täljedal I. B. Insulin release, cGMP, cAMP, and membrane potential in acetylcholine-stimulated islets. Am J Physiol. 1978 Nov;235(5):E493–E500. doi: 10.1152/ajpendo.1978.235.5.E493. [DOI] [PubMed] [Google Scholar]
  14. Gazdar A. F., Chick W. L., Oie H. K., Sims H. L., King D. L., Weir G. C., Lauris V. Continuous, clonal, insulin- and somatostatin-secreting cell lines established from a transplantable rat islet cell tumor. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3519–3523. doi: 10.1073/pnas.77.6.3519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gylfe E., Andersson T., Rorsman P., Abrahamsson H., Arkhammar P., Hellman P., Hellman B., Oie H. K., Gazdar A. F. Depolarization-independent net uptake of calcium into clonal insulin-releasing cells exposed to glucose. Biosci Rep. 1983 Oct;3(10):927–937. doi: 10.1007/BF01140662. [DOI] [PubMed] [Google Scholar]
  16. Gylfe E. Glucose stimulated net uptake of Ca2+ in the pancreatic beta-cell demonstrated with dual wavelength spectrophotometry. Acta Physiol Scand. 1982 Jan;114(1):149–151. doi: 10.1111/j.1748-1716.1982.tb06964.x. [DOI] [PubMed] [Google Scholar]
  17. Joseph S. K., Coll K. E., Cooper R. H., Marks J. S., Williamson J. R. Mechanisms underlying calcium homeostasis in isolated hepatocytes. J Biol Chem. 1983 Jan 25;258(2):731–741. [PubMed] [Google Scholar]
  18. Joseph S. K., Williams R. J., Corkey B. E., Matschinsky F. M., Williamson J. R. The effect of inositol trisphosphate on Ca2+ fluxes in insulin-secreting tumor cells. J Biol Chem. 1984 Nov 10;259(21):12952–12955. [PubMed] [Google Scholar]
  19. Kohnert K. D., Hahn H. J., Gylfe E., Borg H., Hellman B. Calcium and pancreatic beta-cell function. 6. Glucose and intracellular 45Ca distribution. Mol Cell Endocrinol. 1979 Dec;16(3):205–220. doi: 10.1016/0303-7207(79)90027-3. [DOI] [PubMed] [Google Scholar]
  20. Krebs H. A. The Pasteur effect and the relations between respiration and fermentation. Essays Biochem. 1972;8:1–34. [PubMed] [Google Scholar]
  21. Laychock S. G. Identification and metabolism of polyphosphoinositides in isolated islets of Langerhans. Biochem J. 1983 Oct 15;216(1):101–106. doi: 10.1042/bj2160101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Montague W., Morgan N. G., Rumford G. M., Prince C. A. Effect of glucose on polyphosphoinositide metabolism in isolated rat islets of Langerhans. Biochem J. 1985 Apr 15;227(2):483–489. doi: 10.1042/bj2270483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nenquin M., Awouters P., Mathot F., Henquin J. C. Distinct effects of acetylcholine and glucose on 45calcium and 86rubidium efflux from mouse pancreatic islets. FEBS Lett. 1984 Oct 29;176(2):457–461. doi: 10.1016/0014-5793(84)81218-1. [DOI] [PubMed] [Google Scholar]
  24. Oie H. K., Gazdar A. F., Minna J. D., Weir G. C., Baylin S. B. Clonal analysis of insulin and somatostatin secretion and L-dopa decarboxylase expression by a rat islet cell tumor. Endocrinology. 1983 Mar;112(3):1070–1075. doi: 10.1210/endo-112-3-1070. [DOI] [PubMed] [Google Scholar]
  25. Pace C. S., Tarvin J. T., Smith J. S. Stimulus-secretion coupling in beta-cells: modulation by pH. Am J Physiol. 1983 Jan;244(1):E3–18. doi: 10.1152/ajpendo.1983.244.1.E3. [DOI] [PubMed] [Google Scholar]
  26. Praz G. A., Halban P. A., Wollheim C. B., Blondel B., Strauss A. J., Renold A. E. Regulation of immunoreactive-insulin release from a rat cell line (RINm5F). Biochem J. 1983 Feb 15;210(2):345–352. doi: 10.1042/bj2100345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rorsman P., Berggren P. O., Gylfe E., Hellman B. Reduction of the cytosolic calcium activity in clonal insulin-releasing cells exposed to glucose. Biosci Rep. 1983 Oct;3(10):939–946. doi: 10.1007/BF01140663. [DOI] [PubMed] [Google Scholar]
  28. Udenfriend S., Stein S., Böhlen P., Dairman W., Leimgruber W., Weigele M. Fluorescamine: a reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science. 1972 Nov 24;178(4063):871–872. doi: 10.1126/science.178.4063.871. [DOI] [PubMed] [Google Scholar]
  29. Wollheim C. B., Siegel E. G., Sharp G. W. Dependency of acetylcholine-induced insulin release on Ca++ uptake by rat pancreatic islets. Endocrinology. 1980 Oct;107(4):924–929. doi: 10.1210/endo-107-4-924. [DOI] [PubMed] [Google Scholar]
  30. Wolters G. H., Wiegman J. B., Konijnendijk W. The effect of glucose stimulation on 45calcium uptake of rat pancreatic islets and their total calcium content as measured by a fluorometric micro-method. Diabetologia. 1982 Feb;22(2):122–127. doi: 10.1007/BF00254841. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES