Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Jun 15;212(3):773–782. doi: 10.1042/bj2120773

Effect of micromolar concentrations of manganese ions on calcium-ion cycling in rat liver mitochondria.

B P Hughes, J H Exton
PMCID: PMC1153154  PMID: 6192809

Abstract

The effects of micromolar concentrations of Mn2+ on the rat liver mitochondrial Ca2+ cycle were investigated. It was found that the addition of Mn2+ to mitochondria which were cycling 45Ca2+ led to a rapid dose dependent decrease in the concentration of extramitochondrial 45Ca2+ of about 1 nmol/mg of protein. The effect was complete within 30 s, was half maximal with 10 microM Mn2+ and was observed in the presence of 3 mM Mg2+ and 1 mM ATP. It occurred over a broad range of incubation temperatures, pH and mitochondrial Ca2+ loads. It was not observed when either Mg2+ or phosphate was absent from the incubation medium, or in the presence of Ruthenium Red. These findings indicate that micromolar concentrations of Mn2+ stimulate the uptake of Ca2+ by rat liver mitochondria, and provide evidence for an interaction between Mg2+ and Mn2+ in the control of mitochondrial Ca2+ cycling.

Full text

PDF
773

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akerboom T. P., Bookelman H., Zuurendonk P. F., van der Meer R., Tager J. M. Intramitochondrial and extramitochondrial concentrations of adenine nucleotides and inorganic phosphate in isolated hepatocytes from fasted rats. Eur J Biochem. 1978 Mar 15;84(2):413–420. doi: 10.1111/j.1432-1033.1978.tb12182.x. [DOI] [PubMed] [Google Scholar]
  2. Akerman K. E. Effect of pH and Ca2+ on the retention of Ca2+ by rat liver mitochondria. Arch Biochem Biophys. 1978 Aug;189(2):256–262. doi: 10.1016/0003-9861(78)90211-4. [DOI] [PubMed] [Google Scholar]
  3. Arshad J. H., Holdsworth E. S. Stimulation of calcium efflux from rat liver mitochondria by adenosine 3'5 cyclic monophosphate. J Membr Biol. 1980 Dec 30;57(3):207–212. doi: 10.1007/BF01869588. [DOI] [PubMed] [Google Scholar]
  4. Babcock D. F., Chen J. L., Yip B. P., Lardy H. A. Evidence for mitochondrial localization of the hormone-responsive pool of Ca2+ in isolated hepatocytes. J Biol Chem. 1979 Sep 10;254(17):8117–8120. [PubMed] [Google Scholar]
  5. Barritt G. J. Evidence for two compartments of exchangeable calcium in isolated rat liver mitochondria obtained using a 45Ca exchange technique in the presence of magnesium, phosphate, and ATPase at 37 degrees C. J Membr Biol. 1981;62(1-2):53–63. doi: 10.1007/BF01870199. [DOI] [PubMed] [Google Scholar]
  6. Barritt G. J., Parker J. C., Wadsworth J. C. A kinetic analysis of the effects of adrenaline on calcium distribution in isolated rat liver parenchymal cells. J Physiol. 1981 Mar;312:29–55. doi: 10.1113/jphysiol.1981.sp013614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bartfai T. Preparation of metal-chelate complexes and the design of steady-state kinetic experiments involving metal nucleotide complexes. Adv Cyclic Nucleotide Res. 1979;10:219–242. [PubMed] [Google Scholar]
  8. Becker G. L., Fiskum G., Lehninger A. L. Regulation of free Ca2+ by liver mitochondria and endoplasmic reticulum. J Biol Chem. 1980 Oct 10;255(19):9009–9012. [PubMed] [Google Scholar]
  9. Berthon B., Poggioli J., Capiod T., Claret M. Effect of the alpha-agonist noradrenaline on total and 45Ca2+ movements in mitochondria of rat liver cells. Biochem J. 1981 Oct 15;200(1):177–180. doi: 10.1042/bj2000177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Blackmore P. F., Dehaye J. P., Exton J. H. Studies on alpha-adrenergic activation of hepatic glucose output. The role of mitochondrial calcium release in alpha-adrenergic activation of phosphorylase in perfused rat liver. J Biol Chem. 1979 Aug 10;254(15):6945–6950. [PubMed] [Google Scholar]
  11. Blackmore P. F., Dehaye J. P., Strickland W. G., Exton J. H. alpha-Adrenergic mobilization of hepatic mitochondrial calcium. FEBS Lett. 1979 Apr 1;100(1):117–120. doi: 10.1016/0014-5793(79)81144-8. [DOI] [PubMed] [Google Scholar]
  12. Case G. D. Magnetic resonance studies on the mitochondrial divalent cation carrier. Biochim Biophys Acta. 1975 Jan 14;375(1):69–86. doi: 10.1016/0005-2736(75)90073-5. [DOI] [PubMed] [Google Scholar]
  13. Coll K. E., Joseph S. K., Corkey B. E., Williamson J. R. Determination of the matrix free Ca2+ concentration and kinetics of Ca2+ efflux in liver and heart mitochondria. J Biol Chem. 1982 Aug 10;257(15):8696–8704. [PubMed] [Google Scholar]
  14. Crompton M., Moser R., Lüdi H., Carafoli E. The interrelations between the transport of sodium and calcium in mitochondria of various mammalian tissues. Eur J Biochem. 1978 Jan 2;82(1):25–31. doi: 10.1111/j.1432-1033.1978.tb11993.x. [DOI] [PubMed] [Google Scholar]
  15. Dehaye J. P., Hughes B. P., Blackmore P. F., Exton J. H. Insulin inhibition of alpha-adrenergic actions in liver. Biochem J. 1981 Mar 15;194(3):949–956. doi: 10.1042/bj1940949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gunter T. E., Gunter K. K., Puskin J. S., Russell P. R. Efflux of Ca2+ and Mn2+ from rat liver mitochondria. Biochemistry. 1978 Jan 24;17(2):339–345. doi: 10.1021/bi00595a023. [DOI] [PubMed] [Google Scholar]
  17. Haworth R. A., Hunter D. R., Berkoff H. A. Na+ releases Ca2+ from liver, kidney and lung mitochondria. FEBS Lett. 1980 Feb 11;110(2):216–218. doi: 10.1016/0014-5793(80)80076-7. [DOI] [PubMed] [Google Scholar]
  18. Heaton G. M., Nicholls D. G. The calcium conductance of the inner membrane of rat liver mitochondria and the determination of the calcium electrochemical gradient. Biochem J. 1976 Jun 15;156(3):635–646. doi: 10.1042/bj1560635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Heffron J. J., Harris E. J. Stimulation of calcium-ion efflux from liver mitochondria by sodium ions and its response to ADP and energy state. Biochem J. 1981 Mar 15;194(3):925–929. doi: 10.1042/bj1940925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hofstetter W., Mühlebach T., Lötscher H. R., Winterhalter K. H., Richter C. ATP prevents both hydroperoxide-induced hydrolysis of pyridine nucleotides and release of calcium in rat liver mitochondria. Eur J Biochem. 1981 Jul;117(2):361–367. doi: 10.1111/j.1432-1033.1981.tb06346.x. [DOI] [PubMed] [Google Scholar]
  21. Hughes B. P., Blackmore P. F., Exton J. H. Exploration of the role of sodium in the alpha-adrenergic regulation of hepatic glycogenolysis. FEBS Lett. 1980 Dec 1;121(2):260–264. doi: 10.1016/0014-5793(80)80357-7. [DOI] [PubMed] [Google Scholar]
  22. Hutson S. M., Pfeiffer D. R., Lardy H. A. Effect of cations and anions on the steady state kinetics of energy-dependent Ca2+ transport in rat liver mitochondria. J Biol Chem. 1976 Sep 10;251(17):5251–5258. [PubMed] [Google Scholar]
  23. Kimura S., Kugai N., Tada R., Kojima I., Abe K., Ogata E. Sources of calcium mobilized by alpha-adrenergic stimulation in perfused rat liver. Horm Metab Res. 1982 Mar;14(3):133–138. doi: 10.1055/s-2007-1018947. [DOI] [PubMed] [Google Scholar]
  24. Kun E. Kinetics of ATP-dependent Mg2+ flux in mitochondria. Biochemistry. 1976 Jun 1;15(11):2328–2336. doi: 10.1021/bi00656a013. [DOI] [PubMed] [Google Scholar]
  25. Lehninger A. L., Vercesi A., Bababunmi E. A. Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1690–1694. doi: 10.1073/pnas.75.4.1690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mela L., Chance B. Spectrophotometric measurements of the kinetics of Ca2+ and Mn2+ accumulation in mitochondria. Biochemistry. 1968 Nov;7(11):4059–4063. doi: 10.1021/bi00851a038. [DOI] [PubMed] [Google Scholar]
  27. Mills C. F. Interactions between elements in tissues: studies in animal models. Fed Proc. 1981 Jun;40(8):2138–2143. [PubMed] [Google Scholar]
  28. Moe O. A., Butler L. G. Yeast inorganic pyrophosphatase. 3. Kinetics of Ca 2+ inhibition. J Biol Chem. 1972 Nov 25;247(22):7315–7319. [PubMed] [Google Scholar]
  29. Moore C. L. Specific inhibition of mitochondrial Ca++ transport by ruthenium red. Biochem Biophys Res Commun. 1971 Jan 22;42(2):298–305. doi: 10.1016/0006-291x(71)90102-1. [DOI] [PubMed] [Google Scholar]
  30. Murphy E., Coll K., Rich T. L., Williamson J. R. Hormonal effects on calcium homeostasis in isolated hepatocytes. J Biol Chem. 1980 Jul 25;255(14):6600–6608. [PubMed] [Google Scholar]
  31. Nedergaard J., Cannon B. Effects of monovalent cations on Ca2 transport in mitochondria; a comparison between brown fat and liver mitochondria from rat. Acta Chem Scand B. 1980;34(2):149–151. doi: 10.3891/acta.chem.scand.34b-0149. [DOI] [PubMed] [Google Scholar]
  32. Nicholls D. G., Brand M. D. The nature of the calcium ion efflux induced in rat liver mitochondria by the oxidation of endogenous nicotinamide nucleotides. Biochem J. 1980 Apr 15;188(1):113–118. doi: 10.1042/bj1880113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Nicholls D. G., Scott I. D. The regulation of brain mitochondrial calcium-ion transport. The role of ATP in the discrimination between kinetic and membrane-potential-dependent calcium-ion efflux mechanisms. Biochem J. 1980 Mar 15;186(3):833–839. doi: 10.1042/bj1860833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Nicholls D. G. The regulation of extramitochondrial free calcium ion concentration by rat liver mitochondria. Biochem J. 1978 Nov 15;176(2):463–474. doi: 10.1042/bj1760463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Prpić V., Bygrave F. L. On the inter-relationship between glucagon action, the oxidation-reduction state of pyridine nucleotides, and calcium retention by rat liver mitochondria. J Biol Chem. 1980 Jul 10;255(13):6193–6199. [PubMed] [Google Scholar]
  36. Puskin J. S., Gunter T. E., Gunter K. K., Russell P. R. Evidence for more than one Ca2+ transport mechanism in mitochondria. Biochemistry. 1976 Aug 24;15(17):3834–3842. doi: 10.1021/bi00662a029. [DOI] [PubMed] [Google Scholar]
  37. ROSSI C. S., LEHNINGER A. L. STOICHIOMETRY OF RESPIRATORY STIMULATION, ACCUMULATION OF CA++ AND PHOSPHATE, AND OXIDATIVE PHOSPHORYLATION IN RAT LIVER MITOCHONDRIA. J Biol Chem. 1964 Nov;239:3971–3980. [PubMed] [Google Scholar]
  38. Reed K. C., Bygrave F. L. The inhibition of mitochondrial calcium transport by lanthanides and ruthenium red. Biochem J. 1974 May;140(2):143–155. doi: 10.1042/bj1400143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Reynafarje B., Lehninger A. L. High affinity and low affinity binding of Ca++ by rat liver mitochondria. J Biol Chem. 1969 Feb 25;244(4):584–593. [PubMed] [Google Scholar]
  40. Roos I., Crompton M., Carafoli E. The effect of phosphoenolpyruvate on the retention of calcium by liver mitochondria. FEBS Lett. 1978 Oct 15;94(2):418–421. doi: 10.1016/0014-5793(78)80990-9. [DOI] [PubMed] [Google Scholar]
  41. Rugolo M., Siliprandi D., Siliprandi N., Toninello A. Parallel efflux of Ca2+ and Pi in energized rat liver mitochondria. Biochem J. 1981 Dec 15;200(3):481–486. doi: 10.1042/bj2000481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Toninello A., Siliprandi D., Siliprandi N. Mg2+ restores membrane potential in rat liver mitochondria deenergized by Ca2+ and phosphate movements. FEBS Lett. 1982 Jun 1;142(1):63–66. doi: 10.1016/0014-5793(82)80220-2. [DOI] [PubMed] [Google Scholar]
  43. Tsokos J., Cornwell T. F., Vlasuk G. Ca2+ efflux from liver mitochondria induced by a decrease in extramitochondrial pH. FEBS Lett. 1980 Oct 6;119(2):297–300. doi: 10.1016/0014-5793(80)80276-6. [DOI] [PubMed] [Google Scholar]
  44. Vainio H., Mela L., Chance B. Energy dependent bivalent cation translocation in rat liver mitochondria. Eur J Biochem. 1970 Feb;12(2):387–391. doi: 10.1111/j.1432-1033.1970.tb00863.x. [DOI] [PubMed] [Google Scholar]
  45. Vasington F. D., Gazzotti P., Tiozzo R., Carafoli E. The effect of ruthenium red on Ca 2+ transport and respiration in rat liver mitochondria. Biochim Biophys Acta. 1972 Jan 21;256(1):43–54. doi: 10.1016/0005-2728(72)90161-2. [DOI] [PubMed] [Google Scholar]
  46. Vinogradov A., Scarpa A. The initial velocities of calcium uptake by rat liver mitochondria. J Biol Chem. 1973 Aug 10;248(15):5527–5531. [PubMed] [Google Scholar]
  47. Wolkowicz P. E., McMillin-Wood J. Dissociation between mitochondria calcium ion release and pyridine nucleotide oxidation. J Biol Chem. 1980 Nov 10;255(21):10348–10353. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES