Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Jun 15;212(3):811–818. doi: 10.1042/bj2120811

The influence of myo-inositol on phosphatidylglycerol synthesis by rat type II pneumonocytes.

J E Bleasdale, N E Tyler, F N Busch, J G Quirk
PMCID: PMC1153158  PMID: 6882396

Abstract

Type II pneumonocytes isolated from adult rat lung were incubated in a serum-free medium containing [14C]glycerol and the incorporation of 14C into glycerophospholipids was measured. After 24 h, more than 80% of the 14C incorporated into total lipids or into phosphatidylcholine and approx. 90% of the 14C incorporated into phosphatidylglycerol after 24 h was recovered in the glycerophosphoester moieties of these molecules. Supplementation of the incubation medium with foetal-bovine serum (10%, v/v) did not alter the incorporation of [14C]glycerol by type II pneumonocytes after 24 h into either a total lipid extract or phosphatidylcholine. In the presence of foetal-bovine serum, however, the incorporation of 14C into phosphatidylglycerol was decreased and the incorporation of 14C into phosphatidylinositol was increased. In the absence of foetal-bovine serum, the incorporation of 14C into phosphatidylglycerol was decreased progressively as the concentration of myo-inositol in the incubation medium was increased. The range of concentration (0.04-0.50 mM) over which myo-inositol had the greatest influence on [14C]glycerol incorporation into phosphatidylglycerol by type II pneumonocytes in vitro encompassed the concentration range measured in foetal-rat serum late in gestation. At 4 days before birth, the concentration of myo-inositol in foetal-rat serum was 0.36 mM and decreased to 0.23 mM 1 day before birth. The concentration of myo-inositol in adult rat serum increased from 0.03 mM to 0.06 mM during pregnancy. Isolated rat type II pneumonocytes were found to take up myo-inositol by a saturable process. A half-maximal rate of myo-inositol uptake occurred at a concentration of myo-inositol of 0.29 mM. The results of this investigation are consistent with the hypothesis that late in gestation there is a decreasing availability of myo-inositol to the foetal lungs and that this favours the biosynthesis of phosphatidylglycerol for surfactant at the expense of phosphatidylinositol biosynthesis.

Full text

PDF
811

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMES B. N., DUBIN D. T. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J Biol Chem. 1960 Mar;235:769–775. [PubMed] [Google Scholar]
  2. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  3. Bleasdale J. E., Johnston J. M. CMP-dependent incorporation of [14C]Glycerol 3-phosphate into phosphatidylglycerol and phosphatidylglycerol phosphate by rabbit lung microsomes. Biochim Biophys Acta. 1982 Mar 12;710(3):377–390. doi: 10.1016/0005-2760(82)90121-7. [DOI] [PubMed] [Google Scholar]
  4. Bleasdale J. E., Maberry M. C., Quirk J. G. Myo-inositol homeostasis in foetal rabbit lung. Biochem J. 1982 Jul 15;206(1):43–52. doi: 10.1042/bj2060043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bleasdale J. E., Wallis P., MacDonald P. C., Johnston J. M. Changes in CDP-diglyceride:inositol transferase activity during rabbit lung development. Pediatr Res. 1979 Oct;13(10):1182–1183. doi: 10.1203/00006450-197910000-00022. [DOI] [PubMed] [Google Scholar]
  6. Bleasdale J. E., Wallis P., MacDonald P. C., Johnston J. M. Characterization of the forward and reverse reactions catalyzed by CDP-diacylglycerol:inositol transferase in rabbit lung tissue. Biochim Biophys Acta. 1979 Oct 26;575(1):135–147. doi: 10.1016/0005-2760(79)90139-5. [DOI] [PubMed] [Google Scholar]
  7. Bleasdale J. E., Wallis P. Phosphatidylinositol-inositol exchange in a rabbit lung. Biochim Biophys Acta. 1981 May 22;664(2):428–440. doi: 10.1016/0005-2760(81)90065-5. [DOI] [PubMed] [Google Scholar]
  8. Body D. R. The phospholipid composition of pig lung surfactant. Lipids. 1971 Sep;6(9):625–629. doi: 10.1007/BF02531518. [DOI] [PubMed] [Google Scholar]
  9. Burton L. E., Wells W. W. Studies on the developmental pattern of the enzymes converting glucose 6-phosphate to myo-inositol in the rat. Dev Biol. 1974 Mar;37(1):35–42. doi: 10.1016/0012-1606(74)90167-5. [DOI] [PubMed] [Google Scholar]
  10. CAMPLING J. D., NIXON D. A. The inositol content of foetal blood and foetal fluids. J Physiol. 1954 Oct 28;126(1):71–80. doi: 10.1113/jphysiol.1954.sp005192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Eichberg J., Gates J., Hauser G. The mechanism of modification by propranolol of the metabolism of phosphatidyl-CMP (CDP-diacylglycerol) and other lipids in the rat pineal gland. Biochim Biophys Acta. 1979 Apr 27;573(1):90–106. doi: 10.1016/0005-2760(79)90176-0. [DOI] [PubMed] [Google Scholar]
  12. Esko J. D., Raetz C. R. Mutants of Chinese hamster ovary cells with altered membrane phospholipid composition. Replacement of phosphatidylinositol by phosphatidylglycerol in a myo-inositol auxotroph. J Biol Chem. 1980 May 25;255(10):4474–4480. [PubMed] [Google Scholar]
  13. Freinkel N., El Younsi C., Dawson M. C. Inter-relations between the phospholipids of rat pancreatic islets during glucose stimulation, and their response to medium inositol and tetracaine. Eur J Biochem. 1975 Nov 1;59(1):245–252. doi: 10.1111/j.1432-1033.1975.tb02448.x. [DOI] [PubMed] [Google Scholar]
  14. Hallman M., Feldman B. H., Kirkpatrick E., Gluck L. Absence of phosphatidylglycerol (PG) in respiratory distress syndrome in the newborn. Study of the minor surfactant phospholipids in newborns. Pediatr Res. 1977 Jun;11(6):714–720. doi: 10.1203/00006450-197706000-00003. [DOI] [PubMed] [Google Scholar]
  15. Hallman M., Kulovich M., Kirkpatrick E., Sugarman R. G., Gluck L. Phosphatidylinositol and phosphatidylglycerol in amniotic fluid: indices of lung maturity. Am J Obstet Gynecol. 1976 Jul 1;125(5):613–617. doi: 10.1016/0002-9378(76)90782-1. [DOI] [PubMed] [Google Scholar]
  16. Kanfer J. N. The base exchange enzymes and phospholipase D of mammalian tissue. Can J Biochem. 1980 Dec;58(12):1370–1380. doi: 10.1139/o80-186. [DOI] [PubMed] [Google Scholar]
  17. Kikkawa Y., Yoneda K. The type II epithelial cell of the lung. I. Method of isolation. Lab Invest. 1974 Jan;30(1):76–84. [PubMed] [Google Scholar]
  18. King R. J., Clements J. A. Surface active materials from dog lung. II. Composition and physiological correlations. Am J Physiol. 1972 Sep;223(3):715–726. doi: 10.1152/ajplegacy.1972.223.3.715. [DOI] [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. Longmuir K. J., Bleasdale J. E., Quirk J. G., Johnston J. M. Regulation of lamellar body acidic glycerophospholipid biosynthesis in fetal rabbit lung in organ culture. Biochim Biophys Acta. 1982 Aug 18;712(2):356–364. doi: 10.1016/0005-2760(82)90353-8. [DOI] [PubMed] [Google Scholar]
  21. Mason R. J., Dobbs L. G. Synthesis of phosphatidylcholine and phosphatidylglycerol by alveolar type II cells in primary culture. J Biol Chem. 1980 Jun 10;255(11):5101–5107. [PubMed] [Google Scholar]
  22. Mason R. J., Williams M. C., Greenleaf R. D., Clements J. A. Isolation and properties of type II alveolar cells from rat lung. Am Rev Respir Dis. 1977 Jun;115(6):1015–1026. doi: 10.1164/arrd.1977.115.6.1015. [DOI] [PubMed] [Google Scholar]
  23. Pfleger R. C., Thomas H. G. Beagle dog pulmonary surfactant lipids. Lipid composition of pulmonary tissue, exfoliated lining cells and surfactant. Arch Intern Med. 1971 May;127(5):863–872. doi: 10.1001/archinte.127.5.863. [DOI] [PubMed] [Google Scholar]
  24. Quirk J. G., Bleasdale J. E., MacDonald P. C., Johnston J. M. A role for cytidine monophosphate in the regulation of the glycerophospholipid composition of surfactant in developing lung. Biochem Biophys Res Commun. 1980 Aug 14;95(3):985–992. doi: 10.1016/0006-291x(80)91570-3. [DOI] [PubMed] [Google Scholar]
  25. Snyder J. M., Mendelson C. R., Johnston J. M. The effect of cortisol on rabbit fetal lung maturation in vitro. Dev Biol. 1981 Jul 15;85(1):129–140. doi: 10.1016/0012-1606(81)90242-6. [DOI] [PubMed] [Google Scholar]
  26. Tanswell A. K., Smith B. T. Human fetal lung type II pneumonocytes in monolayer cell culture: the influence of oxidant stress, cortisol environment, and soluble fibroblast factors. Pediatr Res. 1979 Oct;13(10):1097–1110. doi: 10.1203/00006450-197910000-00002. [DOI] [PubMed] [Google Scholar]
  27. Yavin E., Zutra A. Separation and analysis of 32P-labeled phospholipids by a simple and rapid thin-layer chromatographic procedure and its application to cultured neuroblastoma cells. Anal Biochem. 1977 Jun;80(2):430–437. doi: 10.1016/0003-2697(77)90665-0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES