Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Jun 15;212(3):849–858. doi: 10.1042/bj2120849

Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol.

M J Berridge
PMCID: PMC1153163  PMID: 6309155

Abstract

The agonist-dependent hydrolysis of inositol phospholipids was investigated by studying the breakdown of prelabelled lipid or by measuring the accumulation of inositol phosphates. Stimulation of insect salivary glands with 5-hydroxytryptamine for 6 min provoked a rapid disappearance of [3H]phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] and [3H]phosphatidylinositol 4-phosphate (PtdIns4P) but had no effect on the level of [3H]phosphatidylinositol (PtdIns). The breakdown of PtdIns(4,5)P2 was associated with a very rapid release of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], which reached a peak 5 1/2 times that of the resting level after 5 s of stimulation. This high level was not maintained but declined to a lower level, perhaps reflecting the disappearance of PtdIns(4,5)P2. 5-Hydroxytryptamine also induced a rapid and massive accumulation of inositol 1,4-bisphosphate [Ins(1,4)P2]. The fact that these increases in Ins(1,4,5)P3 and Ins(1,4)P2 precede in time any increase in the level of inositol 1-phosphate or inositol provides a clear indication that the primary action of 5-hydroxytryptamine is to stimulate the hydrolysis of PtdIns(4,5)P2 to yield diacylglycerol and Ins(1,4,5)P3. The latter is then hydrolysed by a series of phosphomonoesterases to produce Ins(1,4)P2, Ins1P and finally inositol. The very rapid agonist-dependent increases in Ins(1,4,5)P3 and Ins(1,4)P2 suggests that they could function as second messengers, perhaps to control the release of calcium from internal pools. The PtdIns(4,5)P2 that is used by the receptor mechanism represents a small hormone-sensitive pool that must be constantly replenished by phosphorylation of PtdIns. Small changes in the size of this small energy-dependent pool of polyphosphoinositide will alter the effectiveness of the receptor mechanism and could account for phenomena such as desensitization and super-sensitivity.

Full text

PDF
849

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdel-Latif A. A., Akhtar R. A., Hawthorne J. N. Acetylcholine increases the breakdown of triphosphoinositide of rabbit iris muscle prelabelled with [32P] phosphate. Biochem J. 1977 Jan 15;162(1):61–73. doi: 10.1042/bj1620061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abdel-Latif A. A., Green K., Smith J. P. Sympathetic denervation and the triphosphoinositide effect in the iris smooth muscle: a biochemical method for the determination of alpha-adrenergic receptor denervation supersensitivity. J Neurochem. 1979 Jan;32(1):225–228. doi: 10.1111/j.1471-4159.1979.tb04532.x. [DOI] [PubMed] [Google Scholar]
  3. Akhtar R. A., Abdel-Latif A. A. Requirement for calcium ions in acetylcholine-stimulated phosphodiesteratic cleavage of phosphatidyl-myo-inositol 4,5-bisphosphate in rabbit iris smooth muscle. Biochem J. 1980 Dec 15;192(3):783–791. doi: 10.1042/bj1920783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berridge M. J., Dawson R. M., Downes C. P., Heslop J. P., Irvine R. F. Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem J. 1983 May 15;212(2):473–482. doi: 10.1042/bj2120473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berridge M. J. Phosphatidylinositol hydrolysis: a multifunctional transducing mechanism. Mol Cell Endocrinol. 1981 Nov;24(2):115–140. doi: 10.1016/0303-7207(81)90055-1. [DOI] [PubMed] [Google Scholar]
  6. Billah M. M., Lapetina E. G. Rapid decrease of phosphatidylinositol 4,5-bisphosphate in thrombin-stimulated platelets. J Biol Chem. 1982 Nov 10;257(21):12705–12708. [PubMed] [Google Scholar]
  7. Billah M. M., Michell R. H. Phosphatidylinositol metabolism in rat hepatocytes stimulated by glycogenolytic hormones. Effects of angiotensin, vasopressin, adrenaline, ionophore A23187 and calcium-ion deprivation. Biochem J. 1979 Sep 15;182(3):661–668. doi: 10.1042/bj1820661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Clarke N. G., Dawson R. M. Alkaline O leads to N-transacylation. A new method for the quantitative deacylation of phospholipids. Biochem J. 1981 Apr 1;195(1):301–306. doi: 10.1042/bj1950301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Downes C. P., Michell R. H. The polyphosphoinositide phosphodiesterase of erythrocyte membranes. Biochem J. 1981 Jul 15;198(1):133–140. doi: 10.1042/bj1980133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Durell J., Sodd M. A., Friedel R. O. Acetylcholine stimulation of the phosphodiesteratic cleavage of guinea pig brain phosphoinositides. Life Sci. 1968 Apr 15;7(8):363–368. doi: 10.1016/0024-3205(68)90034-9. [DOI] [PubMed] [Google Scholar]
  11. Exton J. H. Molecular mechanisms involved in alpha-adrenergic responses. Mol Cell Endocrinol. 1981 Sep;23(3):233–264. doi: 10.1016/0303-7207(81)90123-4. [DOI] [PubMed] [Google Scholar]
  12. Fain J. N., Berridge M. J. Relationship between hormonal activation of phosphatidylinositol hydrolysis, fluid secretion and calcium flux in the blowfly salivary gland. Biochem J. 1979 Jan 15;178(1):45–58. doi: 10.1042/bj1780045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Griffin H. D., Hawthorne J. N. Calcium-activated hydrolysis of phosphatidyl-myo-inositol 4-phosphate and phosphatidyl-myo-inositol 4,5-bisphosphate in guinea-pig synaptosomes. Biochem J. 1978 Nov 15;176(2):541–552. doi: 10.1042/bj1760541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hawthorne J. N., Pickard M. R. Phospholipids in synaptic function. J Neurochem. 1979 Jan;32(1):5–14. doi: 10.1111/j.1471-4159.1979.tb04503.x. [DOI] [PubMed] [Google Scholar]
  15. Hokin-Neaverson M. Metabolism and role of phosphatidylinositol in acetylcholine-stimulated membrane function. Adv Exp Med Biol. 1977;83:429–446. doi: 10.1007/978-1-4684-3276-3_40. [DOI] [PubMed] [Google Scholar]
  16. Holmsen H., Kaplan K. L., Dangelmaier C. A. Differential energy requirements for platelet responses. A simultaneous study of aggregation, three secretory processes, arachidonate liberation, phosphatidylinositol breakdown and phosphatidate production. Biochem J. 1982 Oct 15;208(1):9–18. doi: 10.1042/bj2080009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Irvine R. F., Berridge M. J., Letcher A. J., Dawson R. M. Phosphatidylinositol-hydrolysing enzymes in blowfly salivary glands. Biochem J. 1982 Apr 15;204(1):361–364. doi: 10.1042/bj2040361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Michell R. H. Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta. 1975 Mar 25;415(1):81–47. doi: 10.1016/0304-4157(75)90017-9. [DOI] [PubMed] [Google Scholar]
  19. Michell R. H., Kirk C. J., Jones L. M., Downes C. P., Creba J. A. The stimulation of inositol lipid metabolism that accompanies calcium mobilization in stimulated cells: defined characteristics and unanswered questions. Philos Trans R Soc Lond B Biol Sci. 1981 Dec 18;296(1080):123–138. doi: 10.1098/rstb.1981.0177. [DOI] [PubMed] [Google Scholar]
  20. Pozzan T., Arslan P., Tsien R. Y., Rink T. J. Anti-immunoglobulin, cytoplasmic free calcium, and capping in B lymphocytes. J Cell Biol. 1982 Aug;94(2):335–340. doi: 10.1083/jcb.94.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Putney J. W., Jr Recent hypotheses regarding the phosphatidylinositol effect. Life Sci. 1981 Sep 21;29(12):1183–1194. doi: 10.1016/0024-3205(81)90221-6. [DOI] [PubMed] [Google Scholar]
  22. Schulz I., Stolze H. H. The exocrine pancreas: the role of secretagogues, cyclic nucleotides, and calcium in enzyme secretion. Annu Rev Physiol. 1980;42:127–156. doi: 10.1146/annurev.ph.42.030180.001015. [DOI] [PubMed] [Google Scholar]
  23. Shukla S. D. Minireview. Phosphatidylinositol specific phospholipases C. Life Sci. 1982 Apr 19;30(16):1323–1335. doi: 10.1016/0024-3205(82)90016-9. [DOI] [PubMed] [Google Scholar]
  24. Weiss S. J., McKinney J. S., Putney J. W., Jr Receptor-mediated net breakdown of phosphatidylinositol 4,5-bisphosphate in parotid acinar cells. Biochem J. 1982 Sep 15;206(3):555–560. doi: 10.1042/bj2060555. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES