Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Jan 1;217(1):103–115. doi: 10.1042/bj2170103

Abnormal type I collagen metabolism by cultured fibroblasts in lethal perinatal osteogenesis imperfecta.

J F Bateman, T Mascara, D Chan, W G Cole
PMCID: PMC1153187  PMID: 6421277

Abstract

Cultured skin fibroblasts from seven consecutive cases of lethal perinatal osteogenesis imperfecta (OI) expressed defects of type I collagen metabolism. The secretion of [14C]proline-labelled collagen by the OI cells was specifically reduced (51-79% of control), and collagen degradation was increased to twice that of control cells in five cases and increased by approx. 30% in the other two cases. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis revealed that four of the OI cell lines produced two forms of type I collagen consisting of both normally and slowly migrating forms of the alpha 1(I)- and alpha 2(I)-chains. In the other three OI cell lines only the 'slow' alpha (I)'- and alpha 2(I)'-chains were detected. In both groups inhibition of the post-translational modifications of proline and lysine resulted in the production of a single species of type I collagen with normal electrophoretic migration. Proline hydroxylation was normal, but the hydroxylysine contents of alpha 1(I)'- and alpha 2(I)'-chains purified by h.p.l.c. were greater than in control alpha-chains. The glucosylgalactosylhydroxylysine content was increased approx. 3-fold while the galactosylhydroxylysine content was only slightly increased in the alpha 1(I)'-chains relative to control alpha 1(I)-chains. Peptide mapping of the CNBr-cleavage peptides provided evidence that the increased post-translational modifications were distributed throughout the alpha 1(I)'- and alpha 2(I)'-chains. It is postulated that the greater modification of these chains was due to structural defects of the alpha-chains leading to delayed helix formation. The abnormal charge heterogeneity observed in the alpha 1 CB8 peptide of one patient may reflect such a structural defect in the type I collagen molecule.

Full text

PDF
103

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barsh G. S., Byers P. H. Reduced secretion of structurally abnormal type I procollagen in a form of osteogenesis imperfecta. Proc Natl Acad Sci U S A. 1981 Aug;78(8):5142–5146. doi: 10.1073/pnas.78.8.5142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barsh G. S., David K. E., Byers P. H. Type I osteogenesis imperfecta: a nonfunctional allele for pro alpha 1 (I) chains of type I procollagen. Proc Natl Acad Sci U S A. 1982 Jun;79(12):3838–3842. doi: 10.1073/pnas.79.12.3838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bateman J. F., Peterkofsky B. Mechanisms of Kirsten murine sarcoma virus transformation-induced changes in the collagen phenotype and synthetic rate of BALB 3T3 cells. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6028–6032. doi: 10.1073/pnas.78.10.6028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baum B. J., Moss J., Breul S. D., Berg R. A., Crystal R. G. Effect of cyclic AMP on the intracellular degradation of newly synthesized collagen. J Biol Chem. 1980 Apr 10;255(7):2843–2847. [PubMed] [Google Scholar]
  6. Berg R. A., Schwartz M. L., Crystal R. G. Regulation of the production of secretory proteins: intracellular degradation of newly synthesized "defective" collagen. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4746–4750. doi: 10.1073/pnas.77.8.4746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bienkowski R. S., Engels C. J. Measurement of intracellular collagen degradation. Anal Biochem. 1981 Sep 15;116(2):414–424. doi: 10.1016/0003-2697(81)90382-1. [DOI] [PubMed] [Google Scholar]
  8. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  9. Byers P. H., Barsh G. S., Holbrook K. A. Molecular pathology in inherited disorders of collagen metabolism. Hum Pathol. 1982 Feb;13(2):89–95. doi: 10.1016/s0046-8177(82)80112-3. [DOI] [PubMed] [Google Scholar]
  10. Byers P. H., Shapiro J. R., Rowe D. W., David K. E., Holbrook K. A. Abnormal alpha 2-chain in type I collagen from a patient with a form of osteogenesis imperfecta. J Clin Invest. 1983 Mar;71(3):689–697. doi: 10.1172/JCI110815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chojkier M., Bateman J., Phang J. M., Peterkofsky B. Formation of proline metabolites in chick embryo bone: interference with the measurement of free hydroxyproline by ion-exchange chromatography. Anal Biochem. 1982 Mar 1;120(2):330–338. doi: 10.1016/0003-2697(82)90354-2. [DOI] [PubMed] [Google Scholar]
  12. Chojkier M., Peterkofsky B., Bateman J. New method for determining the extent of proline hydroxylation by measuring changes in the ratio of [4-3H]:[14C]proline in collagenase digests. Anal Biochem. 1980 Nov 1;108(2):385–393. doi: 10.1016/0003-2697(80)90603-x. [DOI] [PubMed] [Google Scholar]
  13. Cole W. G., Bean D. A. Analysis of collagen cyanogen bromide peptides using electrophoresis in continuous concave gradient polyacrylamide gels. Anal Biochem. 1979 Jan 1;92(1):183–188. doi: 10.1016/0003-2697(79)90642-0. [DOI] [PubMed] [Google Scholar]
  14. Cole W. G., Chan D. Analysis of the heterogeneity of human collagens by two-dimensional polyacrylamide-gel electrophoresis. Biochem J. 1981 Aug 1;197(2):377–383. doi: 10.1042/bj1970377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. DULBECCO R., FREEMAN G. Plaque production by the polyoma virus. Virology. 1959 Jul;8(3):396–397. doi: 10.1016/0042-6822(59)90043-1. [DOI] [PubMed] [Google Scholar]
  16. Eisen A. Z., Bauer E. A., Jeffrey J. J. Human skin collagenase. The role of serum alpha-globulins in the control of activity in vivo and in vitro. Proc Natl Acad Sci U S A. 1971 Jan;68(1):248–251. doi: 10.1073/pnas.68.1.248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Eyre D. R. Concepts in collagen biochemistry: evidence that collagenopathies underlie osteogenesis imperfecta. Clin Orthop Relat Res. 1981 Sep;(159):97–107. [PubMed] [Google Scholar]
  18. Kirsch E., Krieg T., Remberger K., Fendel H., Bruckner P., Müller P. K. Disorder of collagen metabolism in a patient with osteogenesis imperfecta (lethal type): increased degree of hydroxylation of lysine in collagen types I and III. Eur J Clin Invest. 1981 Feb;11(1):39–47. doi: 10.1111/j.1365-2362.1981.tb01763.x. [DOI] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Laskey R. A., Mills A. D. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur J Biochem. 1975 Aug 15;56(2):335–341. doi: 10.1111/j.1432-1033.1975.tb02238.x. [DOI] [PubMed] [Google Scholar]
  21. Myllylä R., Alitalo K., Vaheri A., Kivirikko K. I. Regulation of collagen post-translational modification in transformed human and chick-embryo cells. Biochem J. 1981 Jun 15;196(3):683–692. doi: 10.1042/bj1960683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nicholls A. C., Pope F. M., Schloon H. Biochemical heterogeneity of osteogenesis imperfecta: New variant. Lancet. 1979 Jun 2;1(8127):1193–1193. doi: 10.1016/s0140-6736(79)91872-5. [DOI] [PubMed] [Google Scholar]
  23. Oikarinen A., Anttinen H., Kivirikko K. I. Effect of L-azetidine-2-carboxylic acid on glycosylations of collagen in chick-embryo tendon cells. Biochem J. 1976 Dec 15;160(3):639–645. doi: 10.1042/bj1600639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Oikarinen A., Anttinen H., Kivirikko K. I. Further studies on the effect of the collagen triple-helix formation on the hydroxylation of lysine and the glycosylations of hydroxylysine in chick-embryo tendon and cartilage cells. Biochem J. 1977 Sep 15;166(3):357–362. doi: 10.1042/bj1660357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Peltonen L., Palotie A., Prockop D. J. A defect in the structure of type I procollagen in a patient who had osteogenesis imperfecta: excess mannose in the COOH-terminal propeptide. Proc Natl Acad Sci U S A. 1980 Oct;77(10):6179–6183. doi: 10.1073/pnas.77.10.6179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Penttinen R. P., Lichtenstein J. R., Martin G. R., McKusick V. A. Abnormal collagen metabolism in cultured cells in osteogenesis imperfecta. Proc Natl Acad Sci U S A. 1975 Feb;72(2):586–589. doi: 10.1073/pnas.72.2.586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Peterkofsky B., Diegelmann R. Use of a mixture of proteinase-free collagenases for the specific assay of radioactive collagen in the presence of other proteins. Biochemistry. 1971 Mar 16;10(6):988–994. doi: 10.1021/bi00782a009. [DOI] [PubMed] [Google Scholar]
  28. Pinnell S. R., Fox R., Krane S. M. Human collagens: differences in glycosylated hydroxylysines in skin and bone. Biochim Biophys Acta. 1971 Jan 19;229(1):119–122. doi: 10.1016/0005-2795(71)90325-4. [DOI] [PubMed] [Google Scholar]
  29. Pope F. M., Nicholls A. C., Eggleton C., Narcissi P., Hey E. N., Parkin J. M. Osteogenesis imperfecta (lethal) bones contain types III and V collagens. J Clin Pathol. 1980 Jun;33(6):534–538. doi: 10.1136/jcp.33.6.534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Scott P. G., Veis A. The cyanogen bromide peptides of bovine soluble and insoluble collagens. I. Characterization of peptides from soluble type I collagen by sodium dodecylsulphate polyacrylamide gel electrophoresis. Connect Tissue Res. 1976;4(2):107–116. doi: 10.3109/03008207609152206. [DOI] [PubMed] [Google Scholar]
  31. Sillence D. O., Senn A., Danks D. M. Genetic heterogeneity in osteogenesis imperfecta. J Med Genet. 1979 Apr;16(2):101–116. doi: 10.1136/jmg.16.2.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Steinmann B., Rao V. H., Gitzelmann R. Intracellular degradation of newly synthesized collagen is conformation-dependent. FEBS Lett. 1981 Oct 12;133(1):142–144. doi: 10.1016/0014-5793(81)80491-7. [DOI] [PubMed] [Google Scholar]
  33. Trelstad R. L., Rubin D., Gross J. Osteogenesis imperfecta congenita: evidence for a generalized molecular disorder of collagen. Lab Invest. 1977 May;36(5):501–508. [PubMed] [Google Scholar]
  34. van der Rest M., Fietzek P. P. A comprehensive approach to the study of collagen primary structure based on high-performance liquid chromatography. Eur J Biochem. 1982 Jul;125(3):491–496. doi: 10.1111/j.1432-1033.1982.tb06709.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES