Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Jan 15;217(2):391–397. doi: 10.1042/bj2170391

Microsomal and lysosomal enzymes of triacylglycerol metabolism in rat placenta.

R A Coleman, E B Haynes
PMCID: PMC1153229  PMID: 6696738

Abstract

The placenta plays a major role in transporting lipid to the developing foetus. Since previous studies have suggested that placental lipid transport involves intermediate esterification steps, we investigated selected microsomal and lysosomal enzymes of triacylglycerol metabolism in rat placenta. Between gestational days 10 and 14, microsomal phosphatidic acid phosphatase specific activity was 6-fold greater than the activity in adult rat liver. Phosphatidic acid phosphatase activity decreased 50% on day 15. Studies employing several different phosphorylated substrates indicated a high degree of substrate specificity. Lysosomal triacylglycerol lipase and cholesterol esterase activities decreased about 50% between days 15 and 18, then rose late in gestation. No changes were observed in the specific activities of fatty acid: CoA ligase, glycerolphosphate acyltransferase, lysophosphatidate acyltransferase, diacylglycerol acyltransferase or diacylglycerol cholinephosphotransferase during the final 12 days of gestation. Kinetic observations (competitive inhibition by alternative substrates, pH-dependence and thermal inactivation) were consistent with the hypothesis that glycerol phosphate and dihydroxyacetone phosphate can be acylated by a single microsomal enzyme in placenta. Except for fatty acid: CoA ligase, the activities of microsomal and lysosomal enzymes of triacylglycerol metabolism were comparable with those in adult rat liver. These observations are consistent with physiological studies suggesting that triacylglycerol synthetic and degradative pathways are very active in rat placenta.

Full text

PDF
391

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banis R. J., Tove S. B. Solubilization of a long chain fatty acyl-CoA synthetase from chicken adipose tissue microsomes. Biochim Biophys Acta. 1974 May 29;348(2):210–220. doi: 10.1016/0005-2760(74)90232-x. [DOI] [PubMed] [Google Scholar]
  2. Bell R. M., Ballas L. M., Coleman R. A. Lipid topogenesis. J Lipid Res. 1981 Mar;22(3):391–403. [PubMed] [Google Scholar]
  3. Bell R. M., Coleman R. A. Enzymes of glycerolipid synthesis in eukaryotes. Annu Rev Biochem. 1980;49:459–487. doi: 10.1146/annurev.bi.49.070180.002331. [DOI] [PubMed] [Google Scholar]
  4. Breckenridge W. C., Kuksis A. Structure of bovine milk fat triglycerides : I. Short and medium chain lengths. Lipids. 1968 Jul;3(4):291–300. doi: 10.1007/BF02530927. [DOI] [PubMed] [Google Scholar]
  5. Burton B. K., Mueller H. W., Jr Purification and properties of human placental acid lipase. Biochim Biophys Acta. 1980 Jun 23;618(3):449–460. doi: 10.1016/0005-2760(80)90263-5. [DOI] [PubMed] [Google Scholar]
  6. Chepenik K. P., Borst D. E., Waite B. M. Cholinephosphophotransferase activities in early rat embryos and their associated placentas. Dev Biol. 1977 Oct 15;60(2):463–472. doi: 10.1016/0012-1606(77)90143-9. [DOI] [PubMed] [Google Scholar]
  7. Coleman R. A., Bell R. M. Selective changes in enzymes of the sn-glycerol 3-phosphate and dihydroxyacetone-phosphate pathways of triacylglycerol biosynthesis during differentiation of 3T3-L1 preadipocytes. J Biol Chem. 1980 Aug 25;255(16):7681–7687. [PubMed] [Google Scholar]
  8. Coleman R. A., Haynes E. B. Differentiation of microsomal from lysosomal triacylglycerol lipase activities in rat liver. Biochim Biophys Acta. 1983 Apr 13;751(2):230–240. doi: 10.1016/0005-2760(83)90177-7. [DOI] [PubMed] [Google Scholar]
  9. Coleman R. A., Haynes E. B. Selective changes in microsomal enzymes of triacylglycerol and phosphatidylcholine synthesis in fetal and postnatal rat liver. Induction of microsomal sn-glycerol 3-phosphate and dihydroxyacetonephosphate acyltransferase activities. J Biol Chem. 1983 Jan 10;258(1):450–456. [PubMed] [Google Scholar]
  10. Coleman R. A., Reed B. C., Mackall J. C., Student A. K., Lane M. D., Bell R. M. Selective changes in microsomal enzymes of triacylglycerol phosphatidylcholine, and phosphatidylethanolamine biosynthesis during differentiation of 3T3-L1 preadipocytes. J Biol Chem. 1978 Oct 25;253(20):7256–7261. [PubMed] [Google Scholar]
  11. Coleman R., Bell R. M. Phospholipid synthesis in isolated fat cells. Studies of microsomal diacylglycerol cholinephosphotransferase and diacylglycerol ethanolaminephosphotransferase activities. J Biol Chem. 1977 May 10;252(9):3050–3056. [PubMed] [Google Scholar]
  12. Coleman R., Bell R. M. Triacylglycerol synthesis in isolated fat cells. Studies on the microsomal diacylglycerol acyltransferase activity using ethanol-dispersed diacylglycerols. J Biol Chem. 1976 Aug 10;251(15):4537–4543. [PubMed] [Google Scholar]
  13. Diamant Y. Z., Shafrir E. Enzymes of carbohydrate and lipid metabolism in the placenta and liver of pregnant rats. Biochim Biophys Acta. 1972 Oct 25;279(3):424–430. doi: 10.1016/0304-4165(72)90163-8. [DOI] [PubMed] [Google Scholar]
  14. Galski H., Fridovich S. E., Weinstein D., De Groot N., Segal S., Folman R., Hochberg A. A. Synthesis and secretion of alkaline phosphatase in vitro from first-trimester and term human placentas. Biochem J. 1981 Mar 15;194(3):857–866. doi: 10.1042/bj1940857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hahn P. Development of lipid metabolism. Annu Rev Nutr. 1982;2:91–111. doi: 10.1146/annurev.nu.02.070182.000515. [DOI] [PubMed] [Google Scholar]
  16. Hummel L., Schirrmeister W., Zimmermann T. Transfer of maternal plasma free fatty acids into the rat fetus. Acta Biol Med Ger. 1975;34(4):603–605. [PubMed] [Google Scholar]
  17. Hummel L., Schirrmeister W., Zimmermann T., Wagner H. Quantitative studies on the metabolism of placental triglycerides and phospholipids in the rat. Acta Biol Med Ger. 1974;32(4):311–314. [PubMed] [Google Scholar]
  18. Hummel L., Schwartze A., Schirrmeister W., Wagner H. Maternal plasma triglycerides as a source of fetal fatty acids. Acta Biol Med Ger. 1976;35(12):1635–1641. [PubMed] [Google Scholar]
  19. Karp W., Sprecher H., Robertson A. Human placental phospholipid synthesis. Biol Neonate. 1973;22(5):398–406. doi: 10.1159/000240572. [DOI] [PubMed] [Google Scholar]
  20. Kottel R. H., Fishman W. H. Placental alkaline phosphatase isoenzyme expression by the non-HeLa DoT cervical-carcinoma cell line. Biochem J. 1981 Dec 15;200(3):679–684. doi: 10.1042/bj2000679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. LANDS W. E., HART P. METABOLISM OF GLYCEROLIPIDS. VI. SPECIFICITIES OF ACYL COENZYME A: PHOSPHOLIPID ACYLTRANSFERASES. J Biol Chem. 1965 May;240:1905–1911. [PubMed] [Google Scholar]
  22. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  23. Lamb R. G., Fallon H. J. Glycerolipid formation from sn-glycerol-3-phosphate by rat liver cell fractions. The role of phosphatidate phosphohydrolase. Biochim Biophys Acta. 1974 Apr 26;348(1):166–178. doi: 10.1016/0005-2760(74)90103-9. [DOI] [PubMed] [Google Scholar]
  24. Mavis R. D., Finkelstein J. N., Hall B. P. Pulmonary surfactant synthesis. A highly active microsomal phosphatidate phosphohydrolase in the lung. J Lipid Res. 1978 May;19(4):467–477. [PubMed] [Google Scholar]
  25. McComb R. B., Bowers G. N., Jr Study of optimum buffer conditions for measuring alkaline phosphatase activity in human serum. Clin Chem. 1972 Feb;18(2):97–104. [PubMed] [Google Scholar]
  26. Merrill A. H., Jr, Gidwitz S., Bell R. M. Facile enzymatic synthesis of fatty acylcoenzyme A thioesters. J Lipid Res. 1982 Dec;23(9):1368–1373. [PubMed] [Google Scholar]
  27. Mooney R. A., Lane M. D. Formation and turnover of triglyceride-rich vesicles in the chick liver cell. Effects of cAMP and carnitine on triglyceride mobilization and conversion to ketones. J Biol Chem. 1981 Nov 25;256(22):11724–11733. [PubMed] [Google Scholar]
  28. Moriyama I. S., Ishibashi S., Hiraoka K., Ueda S., Noda T. Studies on the placental functions of experimental SFD in rats. Acta Obstet Gynaecol Jpn. 1976 Jul;23(3):225–230. [PubMed] [Google Scholar]
  29. Polokoff M. A., Bell R. M. Characterization of liver cholic acid coenzyme A ligase activity. Evidence that separate microsomal enzymes are responsible for cholic acid and fatty acid activation. J Biol Chem. 1977 Feb 25;252(4):1167–1171. [PubMed] [Google Scholar]
  30. Schlossman D. M., Bell R. M. Glycerolipid biosynthesis in Saccharomyces cerevisiae: sn-glycerol-3-phosphate and dihydroxyacetone phosphate acyltransferase activities. J Bacteriol. 1978 Mar;133(3):1368–1376. doi: 10.1128/jb.133.3.1368-1376.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schlossman D. M., Bell R. M. Microsomal sn-glycerol 3-phosphate and dihydroxyacetone phosphate acyltransferase activities from liver and other tissues. Evidence for a single enzyme catalizing both reactions. Arch Biochem Biophys. 1977 Aug;182(2):732–742. doi: 10.1016/0003-9861(77)90555-0. [DOI] [PubMed] [Google Scholar]
  32. Schlossman D. M., Bell R. M. Triacylglycerol synthesis in isolated fat cells. Evidence that the sn-glycerol-3-phosphate and dihydroxyacetone phosphate acyltransferase activities are dual catalytic functions of a single microsomal enzyme. J Biol Chem. 1976 Sep 25;251(18):5738–5744. [PubMed] [Google Scholar]
  33. Sturton R. G., Brindley D. N. Problems encountered in measuring the activity of phosphatidate phosphohydrolase. Biochem J. 1978 Apr 1;171(1):263–266. doi: 10.1042/bj1710263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Szabo A. J., De Lellis R., Grimaldi R. D. Triglyceride synthesis by the human placenta. I. Incorporation of labeled palmitate into placental triglycerides. Am J Obstet Gynecol. 1973 Jan 15;115(2):257–262. doi: 10.1016/0002-9378(73)90295-0. [DOI] [PubMed] [Google Scholar]
  35. Szabo A. J., Grimaldi R. D., De Lellis R. Triglyceride synthesis by the human placenta. II. The effect of cyanide and fluoride on the incorporation of labeled palmitate into placental triglycerides. Am J Obstet Gynecol. 1973 Jan 15;115(2):263–266. [PubMed] [Google Scholar]
  36. Winkel C. A., Gilmore J., MacDonald P. C., Simpson E. R. Uptake and degradation of lipoproteins by human trophoblastic cells in primary culture. Endocrinology. 1980 Dec;107(6):1892–1898. doi: 10.1210/endo-107-6-1892. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES