Abstract
Effects on insulin release, cyclic AMP content and protein phosphorylation of agents modifying cyclic AMP levels have been tested in intact rat islets of Langerhans. Insulin release induced by glucose was potentiated by dibutyryl cyclic AMP, glucagon, cholera toxin and 3-isobutyl-1-methylxanthine (IBMX); the calmodulin antagonist trifluoperazine reversed these potentiatory effects. Inhibition by trifluoperazine of IBMX-potentiated release was, however, confined to concentrations of IBMX below 50 microM; higher concentrations, up to 1 mM, were resistant to inhibition by trifluoperazine. IBMX-potentiated insulin release was also inhibited by 2-deoxyadenosine, an inhibitor of adenylate cyclase. In the absence of glucose, IBMX at concentrations up to 1 mM did not stimulate insulin release and in the presence of 3.3 mM-glucose IBMX was effective only at a concentration of 1 mM; under the latter conditions trifluoperazine again did not inhibit insulin secretion. The maximum effect on insulin release was achieved with 25 microM-IBMX. Islet [cyclic AMP] was increased by IBMX, with the maximum rise occurring with 100 microM-IBMX. The increase in [cyclic AMP] elicited by IBMX was more rapid than that induced by cholera toxin. Trifluoperazine did not significantly affect islet cyclic AMP levels under any of the conditions tested. When islets were incubated with [32P]Pi, radioactivity was incorporated into islet ATP predominantly in the gamma-position. The rate of equilibration of label was dependent on medium Pi and glucose concentration and at optimal concentrations of these 100% equilibration of internal [32P]ATP with external [32P]Pi required a period of 3h. Radioactivity was incorporated into islet protein and, in response to an increase in islet [cyclic AMP], the major effect was on a protein of Mr 15 000 on sodium dodecyl sulphate/polyacrylamide gels. The extent of phosphorylation of the Mr-15 000 protein was correlated with the level of cyclic AMP: phosphorylation in response to IBMX was inhibited by 2-deoxyadenosine but not by trifluoperazine. Fractionation of islets suggested that the Mr-15 000 protein was of nuclear origin: the protein co-migrated with histone H3 on acetic acid/urea/Triton gels. In the islet cytosol a number of proteins were phosphorylated in response to elevation of islet [cyclic AMP]: the major species had Mr values of 18 000, 25 000, 34 000, 38 000 and 48 000. Culture of islets with IBMX increased the rate of [3H]-thymidine incorporation.(ABSTRACT TRUNCATED AT 400 WORDS)
Full text
PDF












Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashcroft S. J., Bunce J., Lowry M., Hansen S. E., Hedeskov C. J. The effect of sugars on (pro)insulin biosynthesis. Biochem J. 1978 Aug 15;174(2):517–526. doi: 10.1042/bj1740517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ashcroft S. J., Crossley J. R. The effects of glucose, N-acetylglucosamine, glyceraldehyde and other sugars on insulin release in vivo. Diabetologia. 1975 Aug;11(4):279–284. doi: 10.1007/BF00422392. [DOI] [PubMed] [Google Scholar]
- Ashcroft S. J. Glucoreceptor mechanisms and the control of insulin release and biosynthesis. Diabetologia. 1980 Jan;18(1):5–15. doi: 10.1007/BF01228295. [DOI] [PubMed] [Google Scholar]
- Ashcroft S. J., Weerasinghe L. C., Randle P. J. Interrelationship of islet metabolism, adenosine triphosphate content and insulin release. Biochem J. 1973 Feb;132(2):223–231. doi: 10.1042/bj1320223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bonner W. M., West M. H., Stedman J. D. Two-dimensional gel analysis of histones in acid extracts of nuclei, cells, and tissues. Eur J Biochem. 1980 Aug;109(1):17–23. doi: 10.1111/j.1432-1033.1980.tb04762.x. [DOI] [PubMed] [Google Scholar]
- CHAUVEAU J., MOULE Y., ROUILLER C. Isolation of pure and unaltered liver nuclei morphology and biochemical composition. Exp Cell Res. 1956 Aug;11(2):317–321. doi: 10.1016/0014-4827(56)90107-0. [DOI] [PubMed] [Google Scholar]
- Campbell I. L., Taylor K. W. Effects of adenosine, 2-deoxyadenosine and N6-phenylisopropyladenosine on rat islet function and metabolism. Biochem J. 1982 Jun 15;204(3):689–696. doi: 10.1042/bj2040689. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Capito K., Hedeskov C. J. The effect of starvation on phosphodiesterase activity and the content of adenosine 3' :5'-cyclic monophosphate in isolated mouse pancreatic islets. Biochem J. 1974 Sep;142(3):653–658. doi: 10.1042/bj1420653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Charles M. A., Fanska R., Schmid F. G., Forsham P. H., Grodsky G. M. Adenosine 3',5'-monophosphate in pancreatic islets: glucose-induced insulin release. Science. 1973 Feb 9;179(4073):569–571. doi: 10.1126/science.179.4073.569. [DOI] [PubMed] [Google Scholar]
- Coll-Garcia E., Gill J. R. Insulin release by isolated pancreatic islets of the mouse incubated in vitro. Diabetologia. 1969 Apr;5(2):61–66. doi: 10.1007/BF01211999. [DOI] [PubMed] [Google Scholar]
- Cooper R. H., Ashcroft S. J., Randle P. J. Concentration of adenosine 3':5'-cyclic monophosphate in mouse pancreatic islets measured by a protein-binding radioassay. Biochem J. 1973 Jun;134(2):599–605. doi: 10.1042/bj1340599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gagliardino J. J., Harrison D. E., Christie M. R., Gagliardino E. E., Ashcroft S. J. Evidence for the participation of calmodulin in stimulus-secretion coupling in the pancreatic beta-cell. Biochem J. 1980 Dec 15;192(3):919–927. doi: 10.1042/bj1920919. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glass D. B., Krebs E. G. Protein phosphorylation catalyzed by cyclic AMP-dependent and cyclic GMP-dependent protein kinases. Annu Rev Pharmacol Toxicol. 1980;20:363–388. doi: 10.1146/annurev.pa.20.040180.002051. [DOI] [PubMed] [Google Scholar]
- Harrison D. E., Ashcroft S. J. Effects of Ca2+, calmodulin and cyclic AMP on the phosphorylation of endogenous proteins by homogenates of rt islets of langerhans. Biochim Biophys Acta. 1982 Feb 2;714(2):313–319. doi: 10.1016/0304-4165(82)90339-7. [DOI] [PubMed] [Google Scholar]
- Hedeskov C. J., Capito K. The effect of starvation on insulin secretion and glucose metabolism in mouse pancreatic islets. Biochem J. 1974 Jun;140(3):423–433. doi: 10.1042/bj1400423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hellman B., Idahl L. A., Lernmark A., Täljedal I. B. The pancreatic beta-cell recognition of insulin secretagogues: does cyclic AMP mediate the effect of glucose? Proc Natl Acad Sci U S A. 1974 Sep;71(9):3405–3409. doi: 10.1073/pnas.71.9.3405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henquin J. C. Effects of trifluoperazine and pimozide on stimulus-secretion coupling in pancreatic B-cells. Suggestion for a role of calmodulin? Biochem J. 1981 Jun 15;196(3):771–780. doi: 10.1042/bj1960771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howell S. L., Edwards J. C., Montague W. Regulation of adenylate cyclase and cyclic-AMP dependent protein kinase activities in A2-cell rich guinea-pig islets of Langerhans. Horm Metab Res. 1974 Jan;6(1):49–52. doi: 10.1055/s-0028-1093883. [DOI] [PubMed] [Google Scholar]
- Hutton J. C., Malaisse W. J. Dynamics of O2 consumption in rat pancreatic islets. Diabetologia. 1980 May;18(5):395–405. doi: 10.1007/BF00276821. [DOI] [PubMed] [Google Scholar]
- Jahn R., Söling H. D. Phosphorylation of the same specific protein during amylase release evoked by beta-adrenergic or cholinergic agonists in rat and mouse parotid glands. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6903–6906. doi: 10.1073/pnas.78.11.6903. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Janjic D., Wollheim C. B., Siegel E. G., Krausz Y., Sharp G. W. Sites of action of trifluoperazine in the inhibition of glucose-stimulated insulin release. Diabetes. 1981 Nov;30(11):960–966. doi: 10.2337/diab.30.11.960. [DOI] [PubMed] [Google Scholar]
- Johns E. W. Studies on histones. 7. Preparative methods for histone fractions from calf thymus. Biochem J. 1964 Jul;92(1):55–59. doi: 10.1042/bj0920055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krausz Y., Wollheim C. B., Siegel E., Sharp G. W. Possible role for calmodulin in insulin release. Studies with trifluoperazine in rat pancreatic islets. J Clin Invest. 1980 Sep;66(3):603–607. doi: 10.1172/JCI109893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lin B. J., Haist R. E. Effects of some modifiers of insulin secretion on insulin biosynthesis. Endocrinology. 1973 Mar;92(3):735–742. doi: 10.1210/endo-92-3-735. [DOI] [PubMed] [Google Scholar]
- Malaisse W. J., Pipeleers D. G., Levy J. The stimulus-secretion coupling of glucose-induced insulin release. XVI. A glucose-like and calcium-independent effect of cyclic AMP. Biochim Biophys Acta. 1974 Aug 7;362(1):121–128. doi: 10.1016/0304-4165(74)90033-6. [DOI] [PubMed] [Google Scholar]
- Maldonato A., Renold A. E., Sharp G. W., Cerasi E. Glucose-induced proinsulin biosynthesis. Role of islet cyclic AMP. Diabetes. 1977 Jun;26(6):538–545. doi: 10.2337/diab.26.6.538. [DOI] [PubMed] [Google Scholar]
- Montague W., Cook J. R. The role of adenosine 3':5'-cyclic monophosphate in the regulation of insulin release by isolated rat islets of Langerhans. Biochem J. 1971 Mar;122(1):115–120. doi: 10.1042/bj1220115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rabinovitch A., Blondel B., Murray T., Mintz D. H. Cyclic adenosine-3',5'-monophosphate stimulates islet B cell replication in neonatal rat pancreatic monolayer cultures. J Clin Invest. 1980 Nov;66(5):1065–1071. doi: 10.1172/JCI109935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts M. L., Butcher F. R. The involvement of protein phosphorylation in stimulus-secretion coupling in the mouse exocrine pancreas. Biochem J. 1983 Feb 15;210(2):353–359. doi: 10.1042/bj2100353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schubart U. K., Fleischer N., Erlichman J. Ca2+-dependent protein phosphorylation and insulin release in intact hamster insulinoma cells. Inhibition by trifluoperazine. J Biol Chem. 1980 Dec 10;255(23):11063–11066. [PubMed] [Google Scholar]
- Schubart U. K. Regulation of protein phosphorylation in hamster insulinoma cells. Identification of Ca2+-regulated cytoskeletal and cAMP-regulated cytosolic phosphoproteins by two-dimensional electrophoresis. J Biol Chem. 1982 Oct 25;257(20):12231–12238. [PubMed] [Google Scholar]
- Sharp G. W. The adenylate cyclase-cyclic AMP system in islets of Langerhans and its role in the control of insulin release. Diabetologia. 1979 May;16(5):287–296. doi: 10.1007/BF01223617. [DOI] [PubMed] [Google Scholar]
- Sugden M. C., Ashcroft S. J. Cyclic nucleotide phosphodiesterase of rat pancreatic islets. Effects of Ca2+, calmodulin and trifluoperazine. Biochem J. 1981 Aug 1;197(2):459–464. doi: 10.1042/bj1970459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sugden M. C., Ashcroft S. J. Effects of phosphoenolpyruvate, other glycolytic intermediates and methylxanthines on calcium uptake by a mitochondrial fraction from rat pancreatic islets. Diabetologia. 1978 Sep;15(3):173–180. doi: 10.1007/BF00421235. [DOI] [PubMed] [Google Scholar]
- Sugden M. C., Ashcroft S. J., Sugden P. H. Protein kinase activities in rat pancreatic islets of Langerhans. Biochem J. 1979 Apr 15;180(1):219–229. doi: 10.1042/bj1800219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sugden M. C., Christie M. R., Ashcroft S. J. Presence and possible role of calcium-dependent regulator (calmodulin) in rat islets of Langerhans. FEBS Lett. 1979 Sep 1;105(1):95–100. doi: 10.1016/0014-5793(79)80894-7. [DOI] [PubMed] [Google Scholar]
- Suzuki S., Oka H., Yasuda H., Ikeda M., Cheng P. Y., Oda T. Effect of glucagon and cyclic adenosine 3',5'-monophosphate on protein phosphorylation in rat pancreatic islets. Endocrinology. 1983 Jan;112(1):348–352. doi: 10.1210/endo-112-1-348. [DOI] [PubMed] [Google Scholar]
- Suzuki S., Oka H., Yasuda H., Ikeda M., Cheng P. Y., Oda T. Effect of glucose on protein phosphorylation in rat pancreatic islets. Biochem Biophys Res Commun. 1981 Apr 15;99(3):987–993. doi: 10.1016/0006-291x(81)91259-6. [DOI] [PubMed] [Google Scholar]
- Thams P., Capito K., Hedeskov C. J. Differential effects of Ca2+-calmodulin on adenylate cyclase activity cyclase activity in mouse and rat pancreatic islets. Biochem J. 1982 Jul 15;206(1):97–102. doi: 10.1042/bj2060097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Valverde I., Vandermeers A., Anjaneyulu R., Malaisse W. J. Calmodulin activation of adenylate cyclase in pancreatic islets. Science. 1979 Oct 12;206(4415):225–227. doi: 10.1126/science.225798. [DOI] [PubMed] [Google Scholar]
- Voyles N., Gutman R. A., Selawry H., Fink G., Penhos J. C., Recant L. Interaction of various stimulators and inhibitors on insulin secretion in vitro. Horm Res. 1973;4(2):65–73. doi: 10.1159/000178291. [DOI] [PubMed] [Google Scholar]
- Wollheim C. B., Sharp G. W. Regulation of insulin release by calcium. Physiol Rev. 1981 Oct;61(4):914–973. doi: 10.1152/physrev.1981.61.4.914. [DOI] [PubMed] [Google Scholar]
- Zawalich W. S., Karl R. C., Ferrendelli J. A., Matschinsky F. M. Factors governing glucose induced elevation of cyclic 3'5' AMP levels in pancreatic islets. Diabetologia. 1975 Jun;11(3):231–235. doi: 10.1007/BF00422327. [DOI] [PubMed] [Google Scholar]

