Abstract
gamma-Glutamyltransferase activity has been measured in yeast (Saccharomyces cerevisiae) and shown to be associated mainly with the membrane fraction. A similar level of activity is found in a wild-type strain and in gap and gpp strains, the latter mutants being defective in the general amino acid and peptide permeases respectively. The activity is inhibited in whole cells by 6-diazo-5-oxo-L-norleucine (N2O-Nle), azaserine and serine-borate complex; this inactivation seemingly acts from without, for it is similar in (i) control and dicyclohexylcarbodi-imide-treated cells and in (ii) the wild-type and a gap mutant, a treatment and a mutation that it has been shown prevents uptake of the inhibitors. Thus a major portion of the gamma-glutamyltransferase activity appears to exist in a membrane-bound form that is orientated with its gamma-glutamyl-binding site facing the outside. Yeast cells in which gamma-glutamyltransferase has been inactivated by N2O-Nle show no significant change in their rates of uptake of a variety of amino acids, dipeptides and gamma-glutamyl-amino acids. The results preclude a major, direct role for gamma-glutamyltransferase in the transport of these substrates.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Griffith O. W., Bridges R. J., Meister A. Transport of gamma-glutamyl amino acids: role of glutathione and gamma-glutamyl transpeptidase. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6319–6322. doi: 10.1073/pnas.76.12.6319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horiuchi S., Inoue M., Morino Y. Gamma-glutamyl transpeptidase: sidedness of its active site on renal brush-border membrane. Eur J Biochem. 1978 Jul 3;87(3):429–437. doi: 10.1111/j.1432-1033.1978.tb12392.x. [DOI] [PubMed] [Google Scholar]
- Inoue M., Horiuchi S., Morino Y. Affinity labeling of rat-kidney gamma-glutamyl transpeptidase. Eur J Biochem. 1977 Mar 1;73(2):335–342. doi: 10.1111/j.1432-1033.1977.tb11323.x. [DOI] [PubMed] [Google Scholar]
- Inoue M., Morino Y. Inactivation of renal gamma-glutamyl transferase by 6-diazo-5-oxo-L-norleucylglycine, an inactive precursor of affinity-labeling reagent. Proc Natl Acad Sci U S A. 1981 Jan;78(1):46–49. doi: 10.1073/pnas.78.1.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaspers C., Penninckx M. On the role of glutathione in the transport of amino acid in the yeast Saccharomyces cerevisiae: contradictory results. FEBS Lett. 1981 Sep 14;132(1):41–44. doi: 10.1016/0014-5793(81)80423-1. [DOI] [PubMed] [Google Scholar]
- Kuhlenschmidt T., Curthoys N. P. Subcellular localization of rat kidney phosphate independent glutaminase. Arch Biochem Biophys. 1975 Apr;167(2):519–524. doi: 10.1016/0003-9861(75)90494-4. [DOI] [PubMed] [Google Scholar]
- Meister A., Anderson M. E. Glutathione. Annu Rev Biochem. 1983;52:711–760. doi: 10.1146/annurev.bi.52.070183.003431. [DOI] [PubMed] [Google Scholar]
- Meister A., Griffith O. W., Novogrodsky A., Tate S. S. New aspects of glutathione metabolism and translocation in mammals. Ciba Found Symp. 1979;(72):135–161. doi: 10.1002/9780470720554.ch9. [DOI] [PubMed] [Google Scholar]
- Meister A. On the cycles of glutathione metabolism and transport. Curr Top Cell Regul. 1981;18:21–58. doi: 10.1016/b978-0-12-152818-8.50009-8. [DOI] [PubMed] [Google Scholar]
- Meister A. On the enzymology of amino acid transport. Science. 1973 Apr 6;180(4081):33–39. doi: 10.1126/science.180.4081.33. [DOI] [PubMed] [Google Scholar]
- Meister A. Selective modification of glutathione metabolism. Science. 1983 Apr 29;220(4596):472–477. doi: 10.1126/science.6836290. [DOI] [PubMed] [Google Scholar]
- Meister A., Tate S. S. Glutathione and related gamma-glutamyl compounds: biosynthesis and utilization. Annu Rev Biochem. 1976;45:559–604. doi: 10.1146/annurev.bi.45.070176.003015. [DOI] [PubMed] [Google Scholar]
- Meister A., Tate S. S., Thompson G. A. On the function of the gamma-glutamyl cycle in the transport of amino acids and peptides. Ciba Found Symp. 1977;(50):123–143. doi: 10.1002/9780470720318.ch8. [DOI] [PubMed] [Google Scholar]
- Milbauer R., Grossowicz N. Gamma-glutamyl transfer reactions in bacteria. J Gen Microbiol. 1965 Nov;41(2):185–194. doi: 10.1099/00221287-41-2-185. [DOI] [PubMed] [Google Scholar]
- Miozzari G. F., Niederberger P., Hütter R. Permeabilization of microorganisms by Triton X-100. Anal Biochem. 1978 Oct 1;90(1):220–233. doi: 10.1016/0003-2697(78)90026-x. [DOI] [PubMed] [Google Scholar]
- Mooz E. D. Association of glutathione synthetase deficiency and diminished amino acid transport in yeast. Biochem Biophys Res Commun. 1979 Oct 29;90(4):1221–1228. doi: 10.1016/0006-291x(79)91167-7. [DOI] [PubMed] [Google Scholar]
- Mooz E. D., Wigglesworth L. Evidence for the gamma-glutamyl cycle in yeast. Biochem Biophys Res Commun. 1976 Feb 23;68(4):1066–1072. doi: 10.1016/0006-291x(76)90304-1. [DOI] [PubMed] [Google Scholar]
- Novogrodsky A., Tate S. S., Meister A. Uptake and utilization of L-glutamine by human lymphoid cells; relationship to gamma-glutamyl transpeptidase activity. Biochem Biophys Res Commun. 1977 Sep 9;78(1):222–229. doi: 10.1016/0006-291x(77)91243-8. [DOI] [PubMed] [Google Scholar]
- Osuji G. O. Glutathione turnover and amino acid uptake in yeast: evidence for the participation of the gamma-glutamyl cycle in amino acid transport. FEBS Lett. 1979 Sep 15;105(2):283–285. doi: 10.1016/0014-5793(79)80630-4. [DOI] [PubMed] [Google Scholar]
- Osuji G. O. The kinetics of the gamma-glutamyl cycle-mediated uptake of amino acids: considerations explaining the bifurcation of the gamma-glutamyl cycle. FEBS Lett. 1980 Feb 11;110(2):192–194. doi: 10.1016/0014-5793(80)80070-6. [DOI] [PubMed] [Google Scholar]
- Osuji G. O. The pathways of the gamma-glutamyl cycle-mediated uptake of amino acids in yeast. FEBS Lett. 1979 Dec 1;108(1):240–242. doi: 10.1016/0014-5793(79)81219-3. [DOI] [PubMed] [Google Scholar]
- Payne J. W. Peptide transport in bacteria: methods, mutants and energy coupling. Biochem Soc Trans. 1983 Dec;11(6):794–798. doi: 10.1042/bst0110794. [DOI] [PubMed] [Google Scholar]
- Penninckx M., Jaspers C., Wiame J. M. Glutathione metabolism in relation to the amino-acid permeation systems of the yeast Saccharomyces cerevisiae. Occurrence of gamma-glutamyltranspeptidase: its regulation and the effects of permeation mutations on the enzyme cellular level. Eur J Biochem. 1980 Feb;104(1):119–123. doi: 10.1111/j.1432-1033.1980.tb04407.x. [DOI] [PubMed] [Google Scholar]
- Robins R. J., Davies D. D. The role of glutathione in amino acid absorption by yeast. FEBS Lett. 1980 Mar 10;111(2):432–432. doi: 10.1016/0014-5793(80)80843-x. [DOI] [PubMed] [Google Scholar]
- Robins R. J., Davies D. D. The role of glutathione in amino-acid absorption. Lack of correlation between glutathione turnover and amino-acid absorption by the yeast Candida utilis. Biochem J. 1981 Jan 15;194(1):63–70. doi: 10.1042/bj1940063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rytka J. Positive selection of general amino acid permease mutants in Saccharomyces cerevisiae. J Bacteriol. 1975 Feb;121(2):562–570. doi: 10.1128/jb.121.2.562-570.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Serrano R. Effect of ATPase inhibitors on the proton pump of respiratory-deficient yeast. Eur J Biochem. 1980 Apr;105(2):419–424. doi: 10.1111/j.1432-1033.1980.tb04516.x. [DOI] [PubMed] [Google Scholar]
- Tate S. S., Meister A. Affinity labeling of gamma-glutamyl transpeptidase and location of the gamma-glutamyl binding site on the light subunit. Proc Natl Acad Sci U S A. 1977 Mar;74(3):931–935. doi: 10.1073/pnas.74.3.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tate S. S., Meister A. Serine-borate complex as a transition-state inhibitor of gamma-glutamyl transpeptidase. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4806–4809. doi: 10.1073/pnas.75.10.4806. [DOI] [PMC free article] [PubMed] [Google Scholar]
