Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Feb 15;218(1):147–155. doi: 10.1042/bj2180147

gamma-Glutamyltransferase is not involved in the bulk uptake of amino acids, peptides or gamma-glutamyl-amino acids in yeast (Saccharomyces cerevisiae).

G M Payne, J W Payne
PMCID: PMC1153318  PMID: 6143552

Abstract

gamma-Glutamyltransferase activity has been measured in yeast (Saccharomyces cerevisiae) and shown to be associated mainly with the membrane fraction. A similar level of activity is found in a wild-type strain and in gap and gpp strains, the latter mutants being defective in the general amino acid and peptide permeases respectively. The activity is inhibited in whole cells by 6-diazo-5-oxo-L-norleucine (N2O-Nle), azaserine and serine-borate complex; this inactivation seemingly acts from without, for it is similar in (i) control and dicyclohexylcarbodi-imide-treated cells and in (ii) the wild-type and a gap mutant, a treatment and a mutation that it has been shown prevents uptake of the inhibitors. Thus a major portion of the gamma-glutamyltransferase activity appears to exist in a membrane-bound form that is orientated with its gamma-glutamyl-binding site facing the outside. Yeast cells in which gamma-glutamyltransferase has been inactivated by N2O-Nle show no significant change in their rates of uptake of a variety of amino acids, dipeptides and gamma-glutamyl-amino acids. The results preclude a major, direct role for gamma-glutamyltransferase in the transport of these substrates.

Full text

PDF
147

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Griffith O. W., Bridges R. J., Meister A. Transport of gamma-glutamyl amino acids: role of glutathione and gamma-glutamyl transpeptidase. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6319–6322. doi: 10.1073/pnas.76.12.6319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Horiuchi S., Inoue M., Morino Y. Gamma-glutamyl transpeptidase: sidedness of its active site on renal brush-border membrane. Eur J Biochem. 1978 Jul 3;87(3):429–437. doi: 10.1111/j.1432-1033.1978.tb12392.x. [DOI] [PubMed] [Google Scholar]
  3. Inoue M., Horiuchi S., Morino Y. Affinity labeling of rat-kidney gamma-glutamyl transpeptidase. Eur J Biochem. 1977 Mar 1;73(2):335–342. doi: 10.1111/j.1432-1033.1977.tb11323.x. [DOI] [PubMed] [Google Scholar]
  4. Inoue M., Morino Y. Inactivation of renal gamma-glutamyl transferase by 6-diazo-5-oxo-L-norleucylglycine, an inactive precursor of affinity-labeling reagent. Proc Natl Acad Sci U S A. 1981 Jan;78(1):46–49. doi: 10.1073/pnas.78.1.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jaspers C., Penninckx M. On the role of glutathione in the transport of amino acid in the yeast Saccharomyces cerevisiae: contradictory results. FEBS Lett. 1981 Sep 14;132(1):41–44. doi: 10.1016/0014-5793(81)80423-1. [DOI] [PubMed] [Google Scholar]
  6. Kuhlenschmidt T., Curthoys N. P. Subcellular localization of rat kidney phosphate independent glutaminase. Arch Biochem Biophys. 1975 Apr;167(2):519–524. doi: 10.1016/0003-9861(75)90494-4. [DOI] [PubMed] [Google Scholar]
  7. Meister A., Anderson M. E. Glutathione. Annu Rev Biochem. 1983;52:711–760. doi: 10.1146/annurev.bi.52.070183.003431. [DOI] [PubMed] [Google Scholar]
  8. Meister A., Griffith O. W., Novogrodsky A., Tate S. S. New aspects of glutathione metabolism and translocation in mammals. Ciba Found Symp. 1979;(72):135–161. doi: 10.1002/9780470720554.ch9. [DOI] [PubMed] [Google Scholar]
  9. Meister A. On the cycles of glutathione metabolism and transport. Curr Top Cell Regul. 1981;18:21–58. doi: 10.1016/b978-0-12-152818-8.50009-8. [DOI] [PubMed] [Google Scholar]
  10. Meister A. On the enzymology of amino acid transport. Science. 1973 Apr 6;180(4081):33–39. doi: 10.1126/science.180.4081.33. [DOI] [PubMed] [Google Scholar]
  11. Meister A. Selective modification of glutathione metabolism. Science. 1983 Apr 29;220(4596):472–477. doi: 10.1126/science.6836290. [DOI] [PubMed] [Google Scholar]
  12. Meister A., Tate S. S. Glutathione and related gamma-glutamyl compounds: biosynthesis and utilization. Annu Rev Biochem. 1976;45:559–604. doi: 10.1146/annurev.bi.45.070176.003015. [DOI] [PubMed] [Google Scholar]
  13. Meister A., Tate S. S., Thompson G. A. On the function of the gamma-glutamyl cycle in the transport of amino acids and peptides. Ciba Found Symp. 1977;(50):123–143. doi: 10.1002/9780470720318.ch8. [DOI] [PubMed] [Google Scholar]
  14. Milbauer R., Grossowicz N. Gamma-glutamyl transfer reactions in bacteria. J Gen Microbiol. 1965 Nov;41(2):185–194. doi: 10.1099/00221287-41-2-185. [DOI] [PubMed] [Google Scholar]
  15. Miozzari G. F., Niederberger P., Hütter R. Permeabilization of microorganisms by Triton X-100. Anal Biochem. 1978 Oct 1;90(1):220–233. doi: 10.1016/0003-2697(78)90026-x. [DOI] [PubMed] [Google Scholar]
  16. Mooz E. D. Association of glutathione synthetase deficiency and diminished amino acid transport in yeast. Biochem Biophys Res Commun. 1979 Oct 29;90(4):1221–1228. doi: 10.1016/0006-291x(79)91167-7. [DOI] [PubMed] [Google Scholar]
  17. Mooz E. D., Wigglesworth L. Evidence for the gamma-glutamyl cycle in yeast. Biochem Biophys Res Commun. 1976 Feb 23;68(4):1066–1072. doi: 10.1016/0006-291x(76)90304-1. [DOI] [PubMed] [Google Scholar]
  18. Novogrodsky A., Tate S. S., Meister A. Uptake and utilization of L-glutamine by human lymphoid cells; relationship to gamma-glutamyl transpeptidase activity. Biochem Biophys Res Commun. 1977 Sep 9;78(1):222–229. doi: 10.1016/0006-291x(77)91243-8. [DOI] [PubMed] [Google Scholar]
  19. Osuji G. O. Glutathione turnover and amino acid uptake in yeast: evidence for the participation of the gamma-glutamyl cycle in amino acid transport. FEBS Lett. 1979 Sep 15;105(2):283–285. doi: 10.1016/0014-5793(79)80630-4. [DOI] [PubMed] [Google Scholar]
  20. Osuji G. O. The kinetics of the gamma-glutamyl cycle-mediated uptake of amino acids: considerations explaining the bifurcation of the gamma-glutamyl cycle. FEBS Lett. 1980 Feb 11;110(2):192–194. doi: 10.1016/0014-5793(80)80070-6. [DOI] [PubMed] [Google Scholar]
  21. Osuji G. O. The pathways of the gamma-glutamyl cycle-mediated uptake of amino acids in yeast. FEBS Lett. 1979 Dec 1;108(1):240–242. doi: 10.1016/0014-5793(79)81219-3. [DOI] [PubMed] [Google Scholar]
  22. Payne J. W. Peptide transport in bacteria: methods, mutants and energy coupling. Biochem Soc Trans. 1983 Dec;11(6):794–798. doi: 10.1042/bst0110794. [DOI] [PubMed] [Google Scholar]
  23. Penninckx M., Jaspers C., Wiame J. M. Glutathione metabolism in relation to the amino-acid permeation systems of the yeast Saccharomyces cerevisiae. Occurrence of gamma-glutamyltranspeptidase: its regulation and the effects of permeation mutations on the enzyme cellular level. Eur J Biochem. 1980 Feb;104(1):119–123. doi: 10.1111/j.1432-1033.1980.tb04407.x. [DOI] [PubMed] [Google Scholar]
  24. Robins R. J., Davies D. D. The role of glutathione in amino acid absorption by yeast. FEBS Lett. 1980 Mar 10;111(2):432–432. doi: 10.1016/0014-5793(80)80843-x. [DOI] [PubMed] [Google Scholar]
  25. Robins R. J., Davies D. D. The role of glutathione in amino-acid absorption. Lack of correlation between glutathione turnover and amino-acid absorption by the yeast Candida utilis. Biochem J. 1981 Jan 15;194(1):63–70. doi: 10.1042/bj1940063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rytka J. Positive selection of general amino acid permease mutants in Saccharomyces cerevisiae. J Bacteriol. 1975 Feb;121(2):562–570. doi: 10.1128/jb.121.2.562-570.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Serrano R. Effect of ATPase inhibitors on the proton pump of respiratory-deficient yeast. Eur J Biochem. 1980 Apr;105(2):419–424. doi: 10.1111/j.1432-1033.1980.tb04516.x. [DOI] [PubMed] [Google Scholar]
  28. Tate S. S., Meister A. Affinity labeling of gamma-glutamyl transpeptidase and location of the gamma-glutamyl binding site on the light subunit. Proc Natl Acad Sci U S A. 1977 Mar;74(3):931–935. doi: 10.1073/pnas.74.3.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tate S. S., Meister A. Serine-borate complex as a transition-state inhibitor of gamma-glutamyl transpeptidase. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4806–4809. doi: 10.1073/pnas.75.10.4806. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES