Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Feb 15;218(1):171–176. doi: 10.1042/bj2180171

Concentration of free oxaloacetate in the mitochondrial compartment of isolated liver cells.

E A Siess, R I Kientsch-Engel, O H Wieland
PMCID: PMC1153321  PMID: 6424654

Abstract

The concentration of metabolically active (i.e. 'free') oxaloacetate in the mitochondrial compartment of isolated liver cells was investigated by two independent approaches. On the basis of mitochondrial aspartate aminotransferase maintaining equilibrium and the direct measurements of mitochondrial aspartate, 2-oxoglutarate and glutamate, the concentration of free oxaloacetate was calculated to be 5 microM after incubation of hepatocytes in the presence of 1.5 mM-lactate and 0.05 mM-oleate. Gradually increasing oleate up to 0.5 mM decreased the free oxaloacetate to 2 microM. Very similar results were obtained when free oxaloacetate concentration was derived from the CO2 production of hepatocytes as a measure of citrate flux through the tricarboxylic acid cycle, and the kinetic data on citrate synthase in situ. The decrease in free oxaloacetate on increasing oleate concentration was associated with lowered rates of cycle-dependent CO2 output and O2 uptake, indicating a decrease in the disposal of acetyl-CoA into the tricarboxylic acid cycle. This decrease could explain 25-30% of the increase in ketone-body production occurring at elevated fatty acid supply. This work documents on a quantitative basis the role of free oxaloacetate in the regulation of ketogenesis.

Full text

PDF
171

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berry M. N., Friend D. S. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol. 1969 Dec;43(3):506–520. doi: 10.1083/jcb.43.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blackshear P. J., Holloway P. A., Aberti K. G. The effects of inhibition of gluconeogenesis on ketogenesis in starved and diabetic rats. Biochem J. 1975 Jun;148(3):353–362. doi: 10.1042/bj1480353b. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brass E. P., Hoppel C. L. Carnitine metabolism in the fasting rat. J Biol Chem. 1978 Apr 25;253(8):2688–2693. [PubMed] [Google Scholar]
  4. Brocks D. G., Siess E. A., Wieland O. H. Validity of the digitonin method for metabolite compartmentation in isolated hepatocytes. Biochem J. 1980 Apr 15;188(1):207–212. doi: 10.1042/bj1880207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Demaugre F., Buc H., Girard J., Leroux J. P. Role of the mitochondrial metabolism of pyruvate on the regulation of ketogenesis in rat hepatocytes. Metabolism. 1983 Jan;32(1):40–48. doi: 10.1016/0026-0495(83)90153-1. [DOI] [PubMed] [Google Scholar]
  6. Greenbaum A. L., Gumaa K. A., McLean P. The distribution of hepatic metabolites and the control of the pathways of carbohydrate metabolism in animals of different dietary and hormonal status. Arch Biochem Biophys. 1971 Apr;143(2):617–663. doi: 10.1016/0003-9861(71)90247-5. [DOI] [PubMed] [Google Scholar]
  7. Hales C. N., Kennedy G. C. Plasma glucose, non-esterified fatty acid and insulin concentrations in hypothalamic-hyperphagic rats. Biochem J. 1964 Mar;90(3):620–624. doi: 10.1042/bj0900620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kuehn A., Scholz R. Rates of flux through the pentose cycle in perfused rat liver. A procedure for the calculation of rates of substrate flux from 14CO2 production from [1-14C]glucose. Eur J Biochem. 1982 Jun;124(3):611–617. doi: 10.1111/j.1432-1033.1982.tb06638.x. [DOI] [PubMed] [Google Scholar]
  9. Lopes-Cardozo M., van den Bergh S. G. Ketogenesis in isolated rat liver mitochondria. I. Relationships with the citric acid cycle and with the mitochondrial energy state. Biochim Biophys Acta. 1972;283(1):1–15. doi: 10.1016/0005-2728(72)90092-8. [DOI] [PubMed] [Google Scholar]
  10. Matlib M. A., Boesman-Finkelstein M., Srere P. A. The kinetics of rat liver citrate synthase in situ. Arch Biochem Biophys. 1978 Dec;191(2):426–430. doi: 10.1016/0003-9861(78)90380-6. [DOI] [PubMed] [Google Scholar]
  11. Moriyama T., Srere P. A. Purification of rat heart and rat liver citrate synthases. Physical, kinetic, and immunological studies. J Biol Chem. 1971 May 25;246(10):3217–3223. [PubMed] [Google Scholar]
  12. Nicholls D. G., Shepherd D., Garland P. B. A continuous recording technique for the measurement of carbon dioxide, and its application to mitochondrial oxidation and decarboxylation reactions. Biochem J. 1967 Jun;103(3):677–691. doi: 10.1042/bj1030677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nosadini R., Datta H., Hodson A., Alberti K. G. A possible mechanism for the anti-ketogenic action of alanine in the rat. Biochem J. 1980 Aug 15;190(2):323–332. doi: 10.1042/bj1900323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Parvin R., Caramancion M. N., Pande S. V. Convenient rapid determination of picomole amounts of oxaloacetate and aspartate. Anal Biochem. 1980 May 15;104(2):296–299. doi: 10.1016/0003-2697(80)90078-0. [DOI] [PubMed] [Google Scholar]
  15. Shepherd D., Garland P. B. The kinetic properties of citrate synthase from rat liver mitochondria. Biochem J. 1969 Sep;114(3):597–610. doi: 10.1042/bj1140597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Siess E. A., Brocks D. G., Wieland O. H. A sensitive and simple method for the study of oxaloacetate compartmentation in isolated hepatocytes. FEBS Lett. 1976 Nov;70(1):51–55. doi: 10.1016/0014-5793(76)80724-7. [DOI] [PubMed] [Google Scholar]
  17. Siess E. A., Brocks D. G., Wieland O. H. Distribution of metabolites between the cytosolic and mitochondrial compartments of hepatocytes isolated from fed rats. Hoppe Seylers Z Physiol Chem. 1978 Jul;359(7):785–798. doi: 10.1515/bchm2.1978.359.2.785. [DOI] [PubMed] [Google Scholar]
  18. Siess E. A., Brocks D. G., Wieland O. H. Subcellular distribution of key metabolites in isolated liver cells from fasted rats. FEBS Lett. 1976 Oct 15;69(1):265–271. doi: 10.1016/0014-5793(76)80701-6. [DOI] [PubMed] [Google Scholar]
  19. Siess E. A., Kientsch-Engel R. I., Wieland O. H. Role of free oxaloacetate in ketogenesis. Derivation from the direct measurement of mitochondrial [3-hydroxybutyrate]/[acetoacetate] ratio in hepatocytes. Eur J Biochem. 1982 Jan;121(3):493–499. doi: 10.1111/j.1432-1033.1982.tb05814.x. [DOI] [PubMed] [Google Scholar]
  20. Siess E. A., Wieland O. H. Phosphorylation state of cytosolic and mitochondrial adenine nucleotides and of pyruvate dehydrogenase in isolated rat liver cells. Biochem J. 1976 Apr 15;156(1):91–102. doi: 10.1042/bj1560091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tischler M. E., Friedrichs D., Coll K., Williamson J. R. Pyridine nucleotide distributions and enzyme mass action ratios in hepatocytes from fed and starved rats. Arch Biochem Biophys. 1977 Nov;184(1):222–236. doi: 10.1016/0003-9861(77)90346-0. [DOI] [PubMed] [Google Scholar]
  22. Veech R. L., Eggleston L. V., Krebs H. A. The redox state of free nicotinamide-adenine dinucleotide phosphate in the cytoplasm of rat liver. Biochem J. 1969 Dec;115(4):609–619. doi: 10.1042/bj1150609a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. WIELAND O., WEISS L., EGER-NEUFELDT I. HEMMUNG DER ENZYMATISCHEN CITRONENSAEURESYNTHESE DURCH LANGKETTIGE ACYL-THIOESTER DES COENZYM A. Biochem Z. 1964 Jun 16;339:501–513. [PubMed] [Google Scholar]
  24. WILLIAMSON D. H., MELLANBY J., KREBS H. A. Enzymic determination of D(-)-beta-hydroxybutyric acid and acetoacetic acid in blood. Biochem J. 1962 Jan;82:90–96. doi: 10.1042/bj0820090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wieland O. H. The mammalian pyruvate dehydrogenase complex: structure and regulation. Rev Physiol Biochem Pharmacol. 1983;96:123–170. doi: 10.1007/BFb0031008. [DOI] [PubMed] [Google Scholar]
  26. Zahlten R. N., Stratman F. W., Lardy H. A. Regulation of glucose synthesis in hormone-sensitive isolated rat hepatocytes. Proc Natl Acad Sci U S A. 1973 Nov;70(11):3213–3218. doi: 10.1073/pnas.70.11.3213. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES