Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Mar 1;218(2):331–339. doi: 10.1042/bj2180331

Conformational states of the (Na+ + K+)-transporting ATPase. Formation of 240 000-Mr and 116 000-Mr polypeptides in the presence of a bifunctional thiol probe.

W E Harris, W L Stahl
PMCID: PMC1153345  PMID: 6324755

Abstract

Interpeptide cross-linking of alpha-subunits with concomitant loss of Na+ + K+-transporting ATPase (Na+, K+-ATPase) activity was found when the purified lamb kidney enzyme was treated with the bifunctional thiol reagent 4,4'-difluoro-3,3'-dinitrodiphenyl sulphone (F2DNS). Several forms of the enzyme could be clearly distinguished: one binding ATP (non-phosphorylated enzyme, E1 X ATP), a phosphorylated form (E2-P) and a phosphoenzyme-ouabain complex (E2P X ouabain). A polypeptide of approx. Mr 240 000 and probable alpha 2 composition comprised up to 5-20% of the total polypeptides after reaction of the lamb kidney Na+, K+-ATPase with F2DNS. The amount of this polypeptide formed was related to the conformational state of the enzyme. The presence of adenine nucleotide greatly diminished the amount of 240 000-Mr polypeptide formed and provides evidence for an enzyme-adenine-nucleotide complex under conditions where the enzyme is not phosphorylated. F2DNS reacted with the enzyme in the presence of Mg2+, Pi and ouabain to form a new polypeptide with an approx. Mr of 116 000, and comprised 23% of the total, whereas the 240 000-Mr polypeptide comprised 9% of the total. This suggests that the 116 000-Mr polypeptide is a characteristic marker of the E2P X ouabain complex. By using specific antibodies it was established that both the 240 000- and 116 000-Mr polypeptides contained alpha-, but not beta-, subunits of the Na+, K+-ATPase.

Full text

PDF
331

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Askari A., Huang W., Antieau J. M. Na+,K+-ATPase: ligand-induced conformational transitions and alterations in subunit interactions evidenced by cross-linking studies. Biochemistry. 1980 Mar 18;19(6):1132–1140. doi: 10.1021/bi00547a015. [DOI] [PubMed] [Google Scholar]
  2. Askari A. Na+, K+-ATPase: relation of conformational transitions to function. Mol Cell Biochem. 1982 Apr 2;43(3):129–143. doi: 10.1007/BF00223005. [DOI] [PubMed] [Google Scholar]
  3. Boyne A. F., Ellman G. L. A methodology for analysis of tissue sulfhydryl components. Anal Biochem. 1972 Apr;46(2):639–653. doi: 10.1016/0003-2697(72)90335-1. [DOI] [PubMed] [Google Scholar]
  4. Burke M., Reisler E. Effect of nucleotide binding on the proximity of the essential sulfhydryl groups of myosin. Chemical probing of movement of residues during conformational transitions. Biochemistry. 1977 Dec 13;16(25):5559–5563. doi: 10.1021/bi00644a026. [DOI] [PubMed] [Google Scholar]
  5. Collins J. H., Forbush B., 3rd, Lane L. K., Ling E., Schwartz A., Zot A. Purification and characterization of an (Na+ + K+)-ATPase proteolipid labeled with a photoaffinity derivative of ouabain. Biochim Biophys Acta. 1982 Mar 23;686(1):7–12. doi: 10.1016/0005-2736(82)90145-6. [DOI] [PubMed] [Google Scholar]
  6. Craig W. S., Kyte J. Stoichiometry and molecular weight of the minimum asymmetric unit of canine renal sodium and potassium ion-activated adenosine triphosphatase. J Biol Chem. 1980 Jul 10;255(13):6262–6269. [PubMed] [Google Scholar]
  7. Forbush B., 3rd, Kaplan J. H., Hoffman J. F. Characterization of a new photoaffinity derivative of ouabain: labeling of the large polypeptide and of a proteolipid component of the Na, K-ATPase. Biochemistry. 1978 Aug 22;17(17):3667–3676. doi: 10.1021/bi00610a037. [DOI] [PubMed] [Google Scholar]
  8. Harris W. E., Stahl W. L. Conformational changes of purified (Na+ + K+)-ATPase detected by a sulfhydryl fluorescence probe. Biochim Biophys Acta. 1977 Nov 23;485(1):203–214. doi: 10.1016/0005-2744(77)90207-8. [DOI] [PubMed] [Google Scholar]
  9. Harris W. E., Stahl W. L. Organization of thiol groups of electric-eel electric-organ sodium-plus-potassium ion-stimulated adenosine triphosphatase studied with bifunctional reagents. Biochem J. 1980 Mar 1;185(3):787–790. doi: 10.1042/bj1850787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Harris W. E., Stahl W. L. Phosphorylation states of the (Na+ + K+)-transporting ATPase in preparations from lamb kidney and electric-eel (Electophorus electricus) electric organ. Biochem J. 1984 Mar 1;218(2):341–345. doi: 10.1042/bj2180341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hart W. M., Jr, Titus E. O. Sulfhydryl groups of sodium-potassium transport adenosine triphosphatase. Protection by physiological ligands and exposure by phosphorylation. J Biol Chem. 1973 Jul 10;248(13):4674–4681. [PubMed] [Google Scholar]
  12. Hastings D. F., Reynolds J. A. Molecular weight of (Na+,K+)ATPase from shark rectal gland. Biochemistry. 1979 Mar 6;18(5):817–821. doi: 10.1021/bi00572a012. [DOI] [PubMed] [Google Scholar]
  13. Huang W. H., Askari A. (Na+ + K+)-ATPase : phosphorylation-dependent cross-linking of the alpha-subunits in the presence of Ca2+ and o-phenanthroline. Biochim Biophys Acta. 1981 Jul 6;645(1):54–58. doi: 10.1016/0005-2736(81)90511-3. [DOI] [PubMed] [Google Scholar]
  14. Inturrisi C. E., Titus E. Kinetics of oligomycin inhibition of sodium- and potassium-activated adenosine triphosphatase from beef brain. Mol Pharmacol. 1968 Nov;4(6):591–599. [PubMed] [Google Scholar]
  15. Karlish S. J., Yates D. W., Glynn I. M. Conformational transitions between Na+-bound and K+-bound forms of (Na+ + K+)-ATPase, studied with formycin nucleotides. Biochim Biophys Acta. 1978 Jul 7;525(1):252–264. doi: 10.1016/0005-2744(78)90219-x. [DOI] [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Lane L. K., Potter J. D., Collins J. H. Large-scale purification of Na,K-ATPase and its protein subunits from lamb kidney medulla. Prep Biochem. 1979;9(2):157–170. doi: 10.1080/00327487908061681. [DOI] [PubMed] [Google Scholar]
  19. Lanzetta P. A., Alvarez L. J., Reinach P. S., Candia O. A. An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem. 1979 Nov 15;100(1):95–97. doi: 10.1016/0003-2697(79)90115-5. [DOI] [PubMed] [Google Scholar]
  20. Patzelt-Wenczler R., Schoner W. Evidence for two different reactive sulfhydryl groups in the ATP-binding sites of (Na+ + K+)-ATPase. Eur J Biochem. 1981;114(1):79–87. doi: 10.1111/j.1432-1033.1981.tb06175.x. [DOI] [PubMed] [Google Scholar]
  21. Peters W. H., de Pont J. J., Koppers A., Bonting S. L. Studies on (Na+ + K+)-activated ATPase. XLVII. Chemical composition, molecular weight and molar ratio of the subunits of the enzyme from rabbit kidney outer medulla. Biochim Biophys Acta. 1981 Feb 20;641(1):55–70. doi: 10.1016/0005-2736(81)90568-x. [DOI] [PubMed] [Google Scholar]
  22. Reeves A. S., Collins J. H., Schwartz A. Isolation and characterization of (Na,K)-ATPase proteolipid. Biochem Biophys Res Commun. 1980 Aug 29;95(4):1591–1598. doi: 10.1016/s0006-291x(80)80080-5. [DOI] [PubMed] [Google Scholar]
  23. Rogers T. B., Lazdunski M. Photoaffinity labeling of the digitalis receptor in the (sodium + potassium)-activated adenosinetriphosphatase. Biochemistry. 1979 Jan 9;18(1):135–140. doi: 10.1021/bi00568a021. [DOI] [PubMed] [Google Scholar]
  24. Rogers T. B., Lazdunski M. Photoaffinity labelling of a small protein component of a purified (Na+-K+)ATPase. FEBS Lett. 1979 Feb 15;98(2):373–376. doi: 10.1016/0014-5793(79)80220-3. [DOI] [PubMed] [Google Scholar]
  25. Schellenberg G. D., Pech I. V., Stahl W. L. Immunoreactivity of subunits of the (Na+ + K+)-ATPase. Cross-reactivity of the alpha, alpha + and beta forms in different organs and species. Biochim Biophys Acta. 1981 Dec 21;649(3):691–700. doi: 10.1016/0005-2736(81)90173-5. [DOI] [PubMed] [Google Scholar]
  26. Schoot B. M., De Pont J. J., Bonting S. L. Studies on (Na+ + K+)-activated ATPase. XLII. Evidence for two classes of essential sulfhydryl groups. Biochim Biophys Acta. 1978 Feb 10;522(2):602–613. doi: 10.1016/0005-2744(78)90091-8. [DOI] [PubMed] [Google Scholar]
  27. Schwartz A., Lindenmayer G. E., Allen J. C. The sodium-potassium adenosine triphosphatase: pharmacological, physiological and biochemical aspects. Pharmacol Rev. 1975 Mar;27(01):3–134. [PubMed] [Google Scholar]
  28. Siegel G. J., Koval G. J., Albers R. W. Sodium-potassium-activated adenosine triphosphatase. IV. Characterization of the phosphoprotein formed from orthophosphate in the presence of ouabain. J Biol Chem. 1969 Jun 25;244(12):3264–3269. [PubMed] [Google Scholar]
  29. Stahl W. L. Ro le of phospholipids in the NA + ,K + -stimulated adenosine triphosphatase system of brain microsomes. Arch Biochem Biophys. 1973 Jan;154(1):56–67. doi: 10.1016/0003-9861(73)90034-9. [DOI] [PubMed] [Google Scholar]
  30. Stahl W. L. Sodium stimulated [14C]adenosine diphosphate-adenosine triphosphate exchange activity in brain microsomes. J Neurochem. 1968 Jun;15(6):511–518. doi: 10.1111/j.1471-4159.1968.tb08948.x. [DOI] [PubMed] [Google Scholar]
  31. de Jong W. W., Zweers A., Cohen L. H. Influence of single amino acid substitutions on electrophoretic mobility of sodium dodecyl sulfate-protein complexes. Biochem Biophys Res Commun. 1978 May 30;82(2):532–539. doi: 10.1016/0006-291x(78)90907-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES