Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Mar 1;218(2):495–499. doi: 10.1042/bj2180495

Spermine binding to submitochondrial particles and activation of adenosine triphosphatase.

G Solaini, B Tadolini
PMCID: PMC1153365  PMID: 6231925

Abstract

Studies on the effects of polyamines on oligomycin-sensitive ATPase activity of ox heart submitochondrial particles showed that, of the polyamines tested, only spermine affected the enzyme activity. Spermine within the physiological concentration range increased the Vmax. of the enzyme, but the Km for ATP was virtually unaffected. Binding studies of [14C]spermine to submitochondrial particles, under the same conditions as used for the ATPase assay, showed that the spermine binds to submitochondrial particles in a co-operative way; Hill plots of the data gave a Hill coefficient of 2 and a Kd of 8 microM. When submitochondrial particles were treated with trypsin, ATPase was not stimulated by spermine and the amount of spermine bound concomitantly was drastically decreased. The ATPase activity of isolated F1-ATPase was not affected by spermine. Removal of the natural protein ATPase inhibitor did not suppress either the stimulation of the ATPase activity by spermine or the spermine binding to the particles. The results obtained suggested that the polyamine binds and acts at the level of the liaison between the coupling factor F1 and the membrane sector F0 of the ATPase complex.

Full text

PDF
495

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkins J. F., Lewis J. B., Anderson C. W., Gesteland R. F. Enhanced differential synthesis of proteins in a mammalian cell-free system by addition of polyamines. J Biol Chem. 1975 Jul 25;250(14):5688–5695. [PubMed] [Google Scholar]
  2. Byczkowski J. Z., Zychlinski L., Porter C. W. Inhibition of the bioenergetic functions of isolated rat liver mitochondria by polyamines. Biochem Pharmacol. 1982 Dec 15;31(24):4045–4053. doi: 10.1016/0006-2952(82)90654-2. [DOI] [PubMed] [Google Scholar]
  3. Chaffee R. R., Arine R. M., Rochelle R. H. The possible role of intracellular polyamines in mitochondrial metabolic regulation. Biochem Biophys Res Commun. 1979 Jan 30;86(2):293–299. doi: 10.1016/0006-291x(79)90865-9. [DOI] [PubMed] [Google Scholar]
  4. Fillingame R. H., Jorstad C. M., Morris D. R. Increased cellular levels of spermidine or spermine are required for optimal DNA synthesis in lymphocytes activated by concanavalin A. Proc Natl Acad Sci U S A. 1975 Oct;72(10):4042–4045. doi: 10.1073/pnas.72.10.4042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Horstman L. L., Racker E. Partial resolution of the enzyme catalyzing oxidative phosphorylation. XXII. Interaction between mitochondrial adenosine triphosphatase inhibitor and mitochondrial adenosine triphosphatase. J Biol Chem. 1970 Mar 25;245(6):1336–1344. [PubMed] [Google Scholar]
  6. Hunter A. R., Farrell P. J., Jackson R. J., Hunt T. The role of polyamines in cell-free protein synthesis in the wheat-germ system. Eur J Biochem. 1977 May 2;75(1):149–157. doi: 10.1111/j.1432-1033.1977.tb11512.x. [DOI] [PubMed] [Google Scholar]
  7. Igarashi K., Yabuki M., Yoshioka Y., Eguchi K., Hirose S. Mechanism of stimulation of polyphenylalanine synthesis by spermidine. Biochem Biophys Res Commun. 1977 Mar 7;75(1):163–171. doi: 10.1016/0006-291x(77)91304-3. [DOI] [PubMed] [Google Scholar]
  8. Inoue H., Kato Y., Takigawa M., Adachi K., Takeda Y. Effect of DL-alpha-hydrazino-delta-aminovaleric acid, an inhibitor of ornithine decarboxylase, on polyamine metabolism in isoproterenol-stimulated mouse parotid glands. J Biochem. 1975 Apr;77(4):879–893. doi: 10.1093/oxfordjournals.jbchem.a130796. [DOI] [PubMed] [Google Scholar]
  9. Kanner B. I., Serrano R., Kandrach M. A., Racker E. Preparation and characterization of homogeneous coupling factor 6 from bovine heart mitochondria. Biochem Biophys Res Commun. 1976 Apr 19;69(4):1050–1056. doi: 10.1016/0006-291x(76)90479-4. [DOI] [PubMed] [Google Scholar]
  10. Kaur-Sawhney R., Altman A., Galston A. W. Dual Mechanisms in Polyamine-mediated Control of Ribonuclease Activity in Oat Leaf Protoplasts. Plant Physiol. 1978 Jul;62(1):158–160. doi: 10.1104/pp.62.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Koshland D. E., Jr, Némethy G., Filmer D. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry. 1966 Jan;5(1):365–385. doi: 10.1021/bi00865a047. [DOI] [PubMed] [Google Scholar]
  12. Kreuzer K. N., Cozzarelli N. R. Formation and resolution of DNA catenanes by DNA gyrase. Cell. 1980 May;20(1):245–254. doi: 10.1016/0092-8674(80)90252-4. [DOI] [PubMed] [Google Scholar]
  13. Lenaz G., Pasquali P., Bertoli E., Parenti-Castelli G. The inhibition of NADH oxidase by the lower homologs of coenzyme Q. Arch Biochem Biophys. 1975 Jul;169(1):217–226. doi: 10.1016/0003-9861(75)90335-5. [DOI] [PubMed] [Google Scholar]
  14. MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
  15. MacLennan D. H., Tzagoloff A. Studies on the mitochondrial adenosine triphosphatase system. IV. Purification and characterization of the oligomycin sensitivity conferring protein. Biochemistry. 1968 Apr;7(4):1603–1610. doi: 10.1021/bi00844a050. [DOI] [PubMed] [Google Scholar]
  16. Maïrouch H., Godinot C. Location of protein(s) involved in oligomycin-induced inhibition of mitochondrial adenosinetriphosphatase near the outer surface of the inner membrane. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4185–4189. doi: 10.1073/pnas.74.10.4185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Moruzzi G., Barbiroli B., Moruzzi M. S., Tadolini B. The effect of spermine on transcription of mammalian chromatin by mammalian deoxyribonucleic acid-dependent ribonucleic acid polymerase. Biochem J. 1975 Mar;146(3):697–703. doi: 10.1042/bj1460697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nakai C., Glinsmann W. Interactions between polyamines and nucleotides. Biochemistry. 1977 Dec 13;16(25):5636–5641. doi: 10.1021/bi00644a039. [DOI] [PubMed] [Google Scholar]
  19. Phillips J. E., Chaffee R. R. Restorative effects of spermine on oxidative phosphorylation and respiration in heat-aged mitochondria. Biochem Biophys Res Commun. 1982 Sep 16;108(1):174–181. doi: 10.1016/0006-291x(82)91847-2. [DOI] [PubMed] [Google Scholar]
  20. RACKER E. A mitochondrial factor conferring oligomycin sensitivity on soluble mitochondrial ATPase. Biochem Biophys Res Commun. 1963 Mar 25;10:435–439. doi: 10.1016/0006-291x(63)90375-9. [DOI] [PubMed] [Google Scholar]
  21. Racker E., Horstman L. L. Partial resolution of the enzymes catalyzing oxidative phosphorylation. 13. Structure and function of submitochondrial particles completely resolved with respect to coupling factor. J Biol Chem. 1967 May 25;242(10):2547–2551. [PubMed] [Google Scholar]
  22. Seidenfeld J., Marton L. J. Depletion of intracellular putrescine and spermidine by alpha-difluromethylornithine does not inhibit proliferation of 9L rat brain tumor cells. Biochem Biophys Res Commun. 1979 Feb 28;86(4):1192–1198. doi: 10.1016/0006-291x(79)90243-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES