Skip to main content
Cellular and Molecular Neurobiology logoLink to Cellular and Molecular Neurobiology
. 2002 Feb;22(1):87–93. doi: 10.1023/A:1015345813075

Rapid Communication: Pyruvate Blocks Zinc-Induced Neurotoxicity in Immortalized Hypothalamic Neurons

Masahiro Kawahara 1, Midori Kato-Negishi 2, Yoichiro Kuroda 1
PMCID: PMC11533741  PMID: 12064519

Abstract

Zinc is an essential trace element and present at high concentrations in the central nervous system. Recent studies have revealed that excess amount of extracellular zinc is neurotoxic, and that the disruption of zinc homeostasis may be related to various neurodegenerative diseases. Zinc (25–100 μM) caused significant death of immortalized hypothalamic neuronal cells (GT1-7 cells) in a dose- and time-dependent manner. LD50 was estimated to be 34 μM. The degenerated cells were TUNEL-positive and exhibited apoptosis-like characteristics. Preadministration of sodium pyruvate (1–2 mM), a downstream energy substrate, inhibited the zinc-induced neurotoxicity in GT1-7 cells. GT1-7 cells can be used as a good tool for the investigation of zinc neurotoxicity in the hypothalamus.

Keywords: apoptosis, hypothalamus, zinc homeostasis, TUNEL, copper

REFERENCES

  1. Frederickson, C. J., Suh, S. W., Silva, D., Frederickson, C. J., and Thompson, R. B. (2000). Importance of zinc in the central nervous system: The zinc-containing neuron. J. Nutr.130:1471S–1483S. [DOI] [PubMed] [Google Scholar]
  2. Hales, T.G., Kim, H., Longoni,B., Olsen, R.W., and Tobin, A. J. (1992). Immortalized hypothalamic GT1-7 neurons express functional γ-aminobutyric acid type A receptors. Mol. Pharmacol.42:197–202. [PubMed] [Google Scholar]
  3. Hambidge, M. (2000). Human zinc deficiency. J. Nutr.130:1344S–1349S. [DOI] [PubMed] [Google Scholar]
  4. Harrison, N. L., Gibbons, S. J. (1994). Znp2C: An endogenous modulator of ligand-and voltage-gated ion channels. Neuropharmacology33:935–952. [DOI] [PubMed] [Google Scholar]
  5. Huang, X., Cuajungco, M. P., Atwood, C. S., Moir, R. D., Tanzi, R. E., and Bush, A. I. (2000). Alzheimer's disease, ß-amyloid protein and zinc. J. Nutr.130:1488S–1492S. [DOI] [PubMed] [Google Scholar]
  6. Ishiyama, M., Tominaga, H., Shiga, M., Sasamoto, K., Ohkura, Y., and Ueno, K. (1996).Acombined assay of cell viability and in vitro cytotoxicity with a highly water-soluble tetrazolium salt, neutral red and crystal violet. Biol. Pharm. Bull. 19:1518–1520. [DOI] [PubMed] [Google Scholar]
  7. Kawahara, M., Arispe, N., Kuroda, Y., and Rojas, E. (1997). Alzheimer's disease amyloid ß-protein forms Zn2C-sensitive, cation-selective channels across excised membrane patches from hypothalamic neurons. Biophys. J. 73:67–75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kawahara, M., Arispe, N., Kuroda, Y., and Rojas, E. (2000). Alzheimer's ß-amyloid, human islet amylin and prion protein fragment evoke intracellular free-calcium elevations by a common mechanism in a hypothalamic GnRH neuronal cell-line. J. Biol. Chem.275:14077–14083. [DOI] [PubMed] [Google Scholar]
  9. Kawahara, M., and Kuroda, Y. (2001). Intracellular calcium changes in neuronal cells induced by Alzheimer's ß-amyloid protein are blocked by estradiol and cholesterol. Cell. Mol. Neurobiol.21:1–13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kim, A. H., Sheline, C. T., Tian, M., Higashi, T., McMahon, R. J., Cousins, R. J., and Choi, D. W. (2000). L-type Cap2C channel-mediated Znp2C toxicity and modulation by ZnT-1 in PC12 cells. Brain Res.886:99–107. [DOI] [PubMed] [Google Scholar]
  11. Koh, J. Y., and Choi, D. W. (1994). Zinc toxicity on cultured cortical neurons: Involvement of N-methyl-D-aspartate receptors. Neuroscience60:1049–1057. [DOI] [PubMed] [Google Scholar]
  12. Koh, J. Y., Suh, S.W., Gwag, B. J., He, Y. Y., Hsu, C. Y., and Choi, D.W. (1996). The role of zinc in selective neuronal death after transient global cerebral ischemia. Science272:1013–1016. [DOI] [PubMed] [Google Scholar]
  13. Lee, J. Y., Kim, Y. H., and Koh, J. Y. (2001). Protection by pyruvate against transient forebrain ischemia in rats. J. Neurosci.21:RC171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Liposits, Z., Merchenthaler, I., Wetsel, W. C., Reid, J. J., Mellon, P. L., Weiner, R. I., and Negro-Vilar, A. (1991). Morphological characterization of immortalized hypothalamic neurons synthesizing luteinizing hormone-releasing hormone. Endocrinology129:1575–1583. [DOI] [PubMed] [Google Scholar]
  15. Mellon, P. L., Windle, J. J., Goldsmith, P. C., Padula, J. L., and Weiner, R. I. (1990). Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis. Neuron5:1–10. [DOI] [PubMed] [Google Scholar]
  16. Sheline, C. T., Behrens, M. M., and Choi, D.W. (2000). Zinc-induced cortical neuronal death: Contribution of energy failure attributable to loss of NADC and inhibition of glycolysis. J. Neurosci.20:3139–3146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Spergel, D. J., Catt, K. J., and Rojas, E. (1996). Immortalized GnRH neurons express large-conductance calcium-activated potassium channels. Neuroendocrinology63:101–111. [DOI] [PubMed] [Google Scholar]
  18. Sunanda Rao, B. S., and Raju, T. R. (1998). Corticosterone attenuates zinc-induced neurotoxicity in primary hippocampal cultures. Brain Res.791:295–298. [DOI] [PubMed] [Google Scholar]
  19. Takeda, A., Takefuta, S., Okada, S., and Oku, N. (2000). Relationship between brain zinc and transient learning impairment of adult rats fed zinc-deficient diet. Brain Res.859:352–357. [DOI] [PubMed] [Google Scholar]
  20. Weiss, J. H., Hartley, D. M., Koh, J. Y., and Choi, D.W. (1993). AMPA receptor activation potentiates zinc neurotoxicity. Neuron10:43–49. [DOI] [PubMed] [Google Scholar]
  21. Weiss, J. H., Sensi, S. L., and Koh, J. Y. (2000). Znp2C: A novel ionic mediator of neural injury in brain disease. Trends Pharmacol. Sci.21:395–401. [DOI] [PubMed] [Google Scholar]
  22. Wetsel, W. C. (1995). Immortalized hypothalamic luteinizing hormone-releasing hormone (LHRH) neurons: A new tool for dissecting the molecular and cellular basis of LHRH physiology. Cell. Mol.Neurobiol.15:43–78. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cellular and Molecular Neurobiology are provided here courtesy of Springer

RESOURCES