Skip to main content
Cellular and Molecular Neurobiology logoLink to Cellular and Molecular Neurobiology
. 2002 Apr;22(2):103–120. doi: 10.1023/A:1019807719343

Insights from Mouse Models of Absence Epilepsy into Ca2+ Channel Physiology and Disease Etiology

Ricardo Felix 1
PMCID: PMC11533750  PMID: 12363194

Abstract

1. Changes in intracellular Ca2+ ([Ca2+]i) levels provide signals that allow neurons to respond to a host of external stimuli. A major mechanism for elevating Ca2+ ([Ca2+]i) is the influx of extracellular Ca2+ through voltage-gated channels (CaV) in the plasma membrane. in CaV due to mutations in genes encoding channel proteins are increasingly being implicated in causing disease conditions, termed channelopathies.

2. Seven spontaneous mutations with cerebellar ataxia and generalized absence epilepsy have been identified in mice (tottering, leaner, rolling Nagoya, rocker, lethargic, ducky, and stargazer), and these overlapping phenotypes are directly related to mutations in genes encoding the four separate subunits that together form the multimeric neuronal CaV complex.

3. The discovery and systematic analysis of these animal models is helping to clarify how different mutations affect channel function and how altered channel function produces disease.

Keywords: Ca2+ channel, channelopathies, absence epilepsy, ataxia, mutant mice

REFERENCES

  1. Aizawa, M., Ito, Y., and Fukuda, H. (1997). Pharmacological profiles of generalized absence seizures in lethargic, stargazer and gamma-hydroxybutyrate-treated model mice. Neurosci. Res. 29:17–25. [DOI] [PubMed] [Google Scholar]
  2. Austin, M. C., Schultzberg, M., Abbott, L. C., Montpied, P., Evers, J. R., Paul, S. M., and Crawley, J. N. (1992). Expression of tyrosine hydroxylase in cerebellar Purkinje neurons of the mutant tottering and leaner mouse. Brain Res. Mol. Brain Res.15:227–240. [DOI] [PubMed] [Google Scholar]
  3. Ayata, C., Shimizu-Sasamata, M., Lo, E. H., Noebels, J. L., and Moskowitz, M. A. (2000). Impaired neurotransmitter release and elevated threshold for cortical spreading depression in mice with mutations in the β1A subunit of P/Q type calcium channels. Neuroscience95:639–645. [DOI] [PubMed] [Google Scholar]
  4. Barclay, J., Balaguero, N., Mione, M., Ackerman, S. L., Letts, V. A., Brodbeck, J., Canti, C., Meir, A., Page, K. M., Kusumi, K., Perez-Reyes, E., Lander, E. S., Frankel, W. N., Gardiner, R. M., Dolphin, A. C., and Rees, M. (2001). Ducky mouse phenotype of epilepsy and ataxia is associated with mutations in the Cacna2d2 gene and decreased calcium channel current in cerebellar Purkinje cells. J. Neurosci. 21:6095–6104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Birnbaumer, L., Qin,N., Olcese, R., Tareilus, E., Platano,D., Costantin, J., and Stefani, E. (1998). Structures and functions of calcium channel β subunits. J. Bioenerg. Biomembr. 30:357–375. [DOI] [PubMed] [Google Scholar]
  6. Black, J. L., and Lennon, V. A. (1999). Identification and cloning of putative human neuronal voltage-gated calcium channel ?-2 and β-3 subunits: Neurologic implications. Mayo Clin. Proc. 74:357–361. [DOI] [PubMed] [Google Scholar]
  7. Brodbeck, J., Davies, A., Courtney, J. M., Meir, A., Balaguero, N., Canti, C., Moss, F. J., Page, K. M., Pratt, W. S., Hunt, S. P., Barclay, J., Rees, M., and Dolphin, A. C. (2002). The ducky mutation in Cacna2d2 results in altered Purkinje cell morphology and is associated with the expression of a truncated ?2?-2 protein with abnormal function. J. Biol. Chem.277:7684–7693. [DOI] [PubMed] [Google Scholar]
  8. Burgess, D. L., Biddlecome, G. H., McDonough, S. I., Diaz, M. E., Zilinski, C. A., Bean, B. P., Campbell, K. P., and Noebels, J. L. (1999). β subunit reshuffling modifies N-and P/Q-type Cap2+ channel subunit compositions in lethargic mouse brain. Mol. Cell. Neurosci. 13:293–311. [DOI] [PubMed] [Google Scholar]
  9. Burgess, D. L., Jones, J. M., Meisler, M. H., and Noebels, J. L. (1997). Mutation of the Cap2+ channel subunit gene Cchb4 is associated with ataxia and seizures in the lethargic (lh) mouse. Cell88:385–392. [DOI] [PubMed] [Google Scholar]
  10. Burgess, D. L., Matsuura, T., Ashizawa, T., and Noebels, J. L. (2000). Genetic localization of the Cap2+ channel gene CACNG2 near SCA10 on chromosome 22q13. Epilepsia41:24–27. [DOI] [PubMed] [Google Scholar]
  11. Burgess, D. L., and Noebels, J. L. (1999). Single gene defects in mice: The role of voltage-dependent calcium channels in absence models. Epilepsy Res.36:111–122. [DOI] [PubMed] [Google Scholar]
  12. Caddick, S. J., Wang, C., Fletcher, C. F., Jenkins, N. A., Copeland, N. G., and Hosford, D. A. (1999). Excitatory but not inhibitory synaptic transmission is reduced in lethargic (Cacnβ4lh) and tottering (Cacn?1Atg) mouse thalami. J. Neurophysiol81:2066–2074. [DOI] [PubMed] [Google Scholar]
  13. Campbell, D. B., and Hess, E. J. (1999). L-type calcium channels contribute to the tottering mouse dystonic episodes. Mol. Pharmacol. 55:23–31. [DOI] [PubMed] [Google Scholar]
  14. Catterall, W. A. (2000). Structure and regulation of voltage-gated Cap2+ channels. Annu. Rev. Cell. Dev. Biol. 16:521–555. [DOI] [PubMed] [Google Scholar]
  15. Chen, L., Bao, S., Qiao, X., and Thompson, R. F. (1999). Impaired cerebellar synapse maturation in waggler, a mutant mouse with a disrupted neuronal calcium channel ° subunit. Proc. Natl. Acad. Sci.USA96: 12132–12137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Chen, L., Chetkovich, D. M., Petralia, R. S., Sweeney, N. T., Kawasaki, Y., Wenthold, R. J., Bredt, D. S., and Nicoll, R. A. (2000). Stargazing regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature408:936–943. [DOI] [PubMed] [Google Scholar]
  17. Chu, P. J., Robertson, H. M., and Best, P. M. (2001). Calcium channel gamma subunits provide insights into the evolution of this gene family. Gene280:37–48. [DOI] [PubMed] [Google Scholar]
  18. Coulter, D. A., Huguenard, J. R., and Prince, D. A. (1989). Calcium currents in rat thalamocortical relay neurones: Kinetic properties of the transient, low-threshold current. J. Physiol.414:587–604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. DeWaard, M., Gurnett, C. A., and Campbell, K. P. (1996). Structural and functional diversity of voltageactivated calcium channels. In Narahashi, T. (ed.), Ion Channels, Vol. IV, Plennum, New York, pp. 41–87. [DOI] [PubMed] [Google Scholar]
  20. DeWaard, M., Liu, H.,Walker,D., Scott, V. E., Gurnett, C. A., and Campbell, K. P. (1997). Direct binding of G-protein ?? complex to voltage-dependent calcium channels. Nature385:446–450. [DOI] [PubMed] [Google Scholar]
  21. DeWaard, M., Pragnell, M., and Campbell, K. P. (1994). Cap2+ channel regulation by a conserved β subunit domain. Neuron13:495–503. [DOI] [PubMed] [Google Scholar]
  22. Di Pasquale, E., Keegan, K.D., and Noebels, J. L. (1997). Increased excitability and inward rectification in layer V cortical pyramidal neurons in the epileptic mutant mouse stargazer. J. Neurophysiol.77:621–631. [DOI] [PubMed] [Google Scholar]
  23. Dove, L. S., Abbott, L. C., and Griffith, W. H. (1998). Whole-cell and single-channel analysis of P-type calcium currents in cerebellar Purkinje cells of leaner mutant mice. J. Neurosci. 18:7687–7699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Dove, L. S., Nahm, S. S., Murchison, D., Abbott, L. C., and Griffith, W. H. (2000). Altered calcium homeostasis in cerebellar Purkinje cells of leaner mutant mice. J. Neurophysiol. 84:513–524. [DOI] [PubMed] [Google Scholar]
  25. Doyle, J., Ren, X., Lennon, G., and Stubbs, L. (1997). Mutations in the Cacnl1a4 calcium channel gene are associated with seizures, cerebellar degeneration, and ataxia in tottering and leaner mutant mice. Mamm. Genome8:113–120. [DOI] [PubMed] [Google Scholar]
  26. Ertel, E. A., Campbell, K. P., Harpold, M. M., Hofmann, F., Mori, Y., Perez-Reyes, E., Schwartz, A., Snutch, T. P., Tanabe, T., Birnbaumer, L., Tsien, R.W., and Catterall, W. A. (2000). Nomenclature of voltage-gated calcium channels. Neuron25:533–535. [DOI] [PubMed] [Google Scholar]
  27. Felix, R. (1999).Voltage-dependentCap2+ channel β2? auxiliary subunit: Structure, function and regulation. Receptors Channels6:351–362. [PubMed] [Google Scholar]
  28. Felix, R. (2000). Channelopathies: Ion channel defects linked to heritable clinical disorders. J. Med. Genet.37:729–740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Fletcher, C. F., Lutz, C. M., O'sullivan, T.N., Shaughnessy, J.D., Jr., Hawkes, R., Frankel, W.N., Copeland, N. G., and Jenkins, N. A. (1996). Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell87:607–617. [DOI] [PubMed] [Google Scholar]
  30. Freise, D., Held, B., Wissenbach, U., Pfeifer, A., Trost, C., Himmerkus, N., Schweig, U., Freichel, M., Biel, M., Hofmann, F., Hoth, M., and Flockerzi, V. (2000). Absence of the ° subunit of the skeletal muscle dihydropyridine receptor increases L-type Cap2+ currents and alters channel inactivation properties. J. Biol. Chem. 275:14476–14481. [DOI] [PubMed] [Google Scholar]
  31. Gao, B., Sekido, Y., Maximov, A., Saad, M., Forgacs, E., Latif, F., Wei, M. H., Lerman, M., Lee, J. H., Perez-Reyes, E., Bezprozvanny, I., and Minna, J. D. (2000). Functional properties of a new voltagedependent calcium channel β2? uxiliary subunit gene (CACNA2D2). J. Biol. Chem. 275:12237–12242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Gruol, D. L., Jacquin, T., and Yool, A. J. (1991). Single-channel KC currents recorded from the somatic and dendritic regions of cerebellar Purkinje neurons in culture. J. Neurosci.11:1002–1015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Hashimoto, K., Fukaya, M., Qiao, X., Sakimura, K., Watanabe, M., and Kano, M. (1999). Impairment of AMPA receptor function in cerebellar granule cells of ataxic mutant mouse stargazer. J. Neurosci. 19:6027–6036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Heckroth, J. A., and Abbott, L.C. (1994). Purkinje cell loss from alternating sagittal zones in the cerebellum of leaner mutant mice. Brain Res. 658:93–104. [DOI] [PubMed] [Google Scholar]
  35. Herrup, K., and Wilczynski, S. L. (1982). Cerebellar cell degeneration in the leaner mutant mouse. Neuroscience7:2185–2196. [DOI] [PubMed] [Google Scholar]
  36. Hess, E. J., and Wilson, M. C. (1991). Tottering and leaner mutations perturb transient developmental expression of tyrosine hydroxylase in embryologically distinct Purkinje cells. Neuron6:123–132. [DOI] [PubMed] [Google Scholar]
  37. Hong, S. J., and Chang, C. C. (1995). Inhibition of acetylcholine release from mouse motor nerve by a P-type calcium channel blocker, omega-agatoxin IVA. J. Physiol. 482:283–290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Jarvis, S. E., and Zamponi, G. W. (2001). Interactions between presynaptic Cap2+ channels, cytoplasmic messengers and proteins of the synaptic vesicle release complex. Trends Pharmacol. Sci.22:519–525. [DOI] [PubMed] [Google Scholar]
  39. Kang, M. G., Chen, C. C., Felix, R., Letts, V. A., Frankel, W. N., Mori, Y., and Campbell, K. P. (2001). Biochemical and biophysical evidence for ° 2 subunit association with neuronal voltage-activated Cap2+ channels. J. Biol. Che. 276:32917–32924. [DOI] [PubMed] [Google Scholar]
  40. Kelly, K. M. (1998). Gabapentin. Antiepileptic mechanism of action. Neuropsychobiology. 38:139–144. [DOI] [PubMed] [Google Scholar]
  41. Klugbauer, N., Dai, S., Specht, V., Lacinova, L., Marais, E., Bohn, G., and Hofmann, F. (2000). A family of gamma-like calcium channel subunits. FEBS Lett.470:189–197. [DOI] [PubMed] [Google Scholar]
  42. Lacinova, L., Klugbauer,N., and Hofmann, F. (2000). Low voltage activated calcium channels: From genes to function. Gen. Physiol. Biophys.19:121–136. [PubMed] [Google Scholar]
  43. Lambert, R. C., Maulet, Y., Mouton, J., Beattie, R., Volsen, S., DeWaard, M., and Feltz, A. (1997). T-type Cap2+ current properties are not modified by Cap2+ channel β subunit depletion in nodosus ganglion neurons. J. Neurosci. 17:6621–6628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Lau, F. C., Abbott, L. C., Rhyu, I. J., Kim, D. S., and Chin, H. (1998). Expression of calcium channel β1A mRNA and protein in the leaner mouse (tgla/tgla) cerebellum. Brain Res. Mol. Brain Res. 59:93–99. [DOI] [PubMed] [Google Scholar]
  45. Lee, A., Wong, S. T., Gallagher, D., Li, B., Storm, D. R., Scheuer, T., and Catterall, W. A. (1999). Cap2+/calmodulin binds to and modulates P/Q-type calcium channels. Nature399:155–159. [DOI] [PubMed] [Google Scholar]
  46. Letts, V. A., Felix, R., Biddlecome, G. H., Arikkath, J., Mahaffey, C. L., Valenzuela, A., Bartlett, F. S., II, Mori, Y., Campbell, K. P., and Frankel, W. N. (1998). The mouse stargazer gene encodes a neuronal Cap2+-channel gamma subunit. Nat. Genet. 19:340–347. [DOI] [PubMed] [Google Scholar]
  47. Letts, V. A., Valenzuela, A., Kirley, J. P., Sweet, H. O., Davisson, M. T., and Frankel, W. N. (1997). Genetic and physical maps of the stargazer locus on mouse chromosome 15. Genomics43:62–68. [DOI] [PubMed] [Google Scholar]
  48. Liu, H., DeWaard, M., Scott, V. E., Gurnett, C. A., Lennon, V. A., and Campbell, K.P. (1996). Identification of three subunits of the high affinity omega-conotoxin MVIIC-sensitive Cap2+ channel. J. Biol. Chem. 271:13804–13810. [PubMed] [Google Scholar]
  49. Llinás, R., and Sugimori, M. (1980). Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J. Physiol.305:171–195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Lorenzon, N. M., and Beam, K. G. (2000). Calcium channelopathies. Kidney Int. 57:794–802. [DOI] [PubMed] [Google Scholar]
  51. Lorenzon, N. M., Lutz, C. M., Frankel, W. N., and Beam, K. G. (1998). Altered calcium channel currents in Purkinje cells of the neurological mutant mouse leaner. J. Neurosci. 18:4482–4489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Luthi, A., and McCormick, D. A. (1998). Periodicity of thalamic synchronized oscillations: The role of Cap2+-mediated upregulation of Ih. Neuron20:553–563. [DOI] [PubMed] [Google Scholar]
  53. Maximov, A., Sudhof, T. C., and Bezprozvanny, I. (1999). Association of neuronal calcium channels with modular adaptor proteins. J. Biol. Chem. 274:24453–24456. [DOI] [PubMed] [Google Scholar]
  54. McEnery, M. W., Copeland, T. D., and Vance, C. L. (1998a). Altered expression and assembly of N-type calcium channel β1B and β subunits in epileptic lethargic (lh/lh) mouse. J. Biol. Chem.273:21435–21438. [DOI] [PubMed] [Google Scholar]
  55. McEnery, M. W., Vance, C. L., Begg, C. M., Lee, W. L., Choi, Y., and Dubel, S. J. (1998b). Differential expression and association of calcium channel subunits in development and disease. J. Bioenerg. Biomembr.30:409–418. [DOI] [PubMed] [Google Scholar]
  56. Meier, H. (1968). The neuropathology of ducky, a neurological mutation of the mouse. A pathological and preliminary histochemical study. Acta Neuropathol.11:15–28. [DOI] [PubMed] [Google Scholar]
  57. Mintz, I. M., Sabatini, B. L., and Regehr, W.G. (1995). Calcium control of transmitter release at a cerebellar synapse. Neuron15:675–688. [DOI] [PubMed] [Google Scholar]
  58. Mori, Y., Wakamori, M., Oda, S., Fletcher, C. F., Sekiguchi, N., Mori, E., Copeland, N. G., Jenkins, N. A., Matsushita, K., Matsuyama, Z., and Imoto,K. (2000). Reduced voltage sensitivity of activation of P/Qtype Cap2+ channels is associated with the ataxic mouse mutation rolling Nagoya (tgrol ). J. Neurosci.20:5654–5662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Muth, J. N., Varadi, G., and Schwartz, A. (2001). Use of transgenic mice to study voltage-dependent Cap2+ channels. Trends Pharmacol. Sci. 22:526–532. [DOI] [PubMed] [Google Scholar]
  60. Nakai, J., Tanabe, T., Konno, T., Adams, B., and Beam, K. G. (1998). Localization in the II-III loop of the dihydropyridine receptor of a sequence critical for excitation–contraction coupling. J. Biol. Chem. 273:24983–24986. [DOI] [PubMed] [Google Scholar]
  61. Noebels, J. L., Fariello, R. G., Jobe, P. C., Lasley, S. M., and Marescaux, C. (1997). Genetic models of generalized epilepsy. In Pedley, J. E., and Pedley, T. A. (eds.), Epilepsy: A Comprehensive Textbook, Lippincott-Raven, Philadelphia, pp. 457–465. [Google Scholar]
  62. Noebels, J. L., Qiao, X., Bronson, R. T., Spencer, C., and Davisson, M. T. (1990). Stargazer: A new neurological mutant on chromosome 15 in the mouse with prolonged cortical seizures. Epilepsy Res. 7:129–135. [DOI] [PubMed] [Google Scholar]
  63. Ogasawara, M., Kurihara, T., Hu, Q., and Tanabe, T. (2001). Characterization of acute somatosensory pain transmission in P/Q-type Cap2+ channel mutant mice, leaner. FEBS Lett.508:181–186. [DOI] [PubMed] [Google Scholar]
  64. Ophoff, R. A., Terwindt, G. M., Vergouwe, M. N., van Eijk, R., Oefner, P. J., Hoffman, S. M., Lamerdin, J. E., Mohrenweiser, H. W., Bulman, D. E., Ferrari, M., Haan, J., Lindhout, D., van Ommen, G. J., Hofker, M. H., Ferrari, M. D., and Frants, R. R. (1996). Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Cap2+ channel gene CACNL1A4. Cell87:543–552. [DOI] [PubMed] [Google Scholar]
  65. Perez-Reyes, E. (1999). Three for T: Molecular analysis of the low voltage-activated calcium channel family. Cell. Mol. Life Sci.56:660–669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Petralia, R. S., and Wenthold, R. J. (1992). Light and electron immunocytochemical localization ofAMPAselective glutamate receptors in the rat brain. J. Comp. Neurol.318:329–354. [DOI] [PubMed] [Google Scholar]
  67. Pragnell, M., De Waard, M., Mori, Y., Tanabe, T., Snutch, T. P., and Campbell, K. P. (1994). Calcium channel β-subunit binds to a conserved motif in the I-II cytoplasmic linker of the β1-subunit. Nature368:67–70. [DOI] [PubMed] [Google Scholar]
  68. Qian, J., and Noebels, J. L. (2000). Presynaptic Cap2+ influx at a mouse central synapse with Cap2+ channel subunit mutations. J. Neurosci.20:163–170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Qian, J., and Noebels, J. L. (2001). Presynaptic Cap2+ channels and neurotransmitter release at the terminal of a mouse cortical neuron. J. Neurosci. 21:3721–3728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Qiao, X., Chen, L., Gao, H., Bao, S., Hefti, F., Thompson, R. F., and Knusel, B. (1998). Cerebellar brainderived neurotrophic factor-TrkB defect associated with impairment of eyeblink conditioning in Stargazer mutant mice. J. Neurosci. 18:6990–6999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Qiao, X., Hefti, F., Knusel, B., and Noebels, J. L. (1996). Selective failure of brain-derived neurotrophic factor mRNA expression in the cerebellum of stargazer, a mutant mouse with ataxia. J. Neurosci.16:640–648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Qiao, X., and Noebels, J. L. (1993). Developmental analysis of hippocampal mossy fiber outgrowth in a mutant mouse with inherited spike-wave seizures. J. Neurosci. 13:4622–4635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Raman, I. M., and Bean, B. P. (1999). Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons. J. Neurosci. 19:1663–1674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Rhyu, I. J., Abbott, L. C., Walker, D. B., and Sotelo, C. (1999a). An ultrastructural study of granule cell/Purkinje cell synapses in tottering (tg/tg), leaner (tgla /tgla ) and compound heterozygous tottering/ leaner (tg/tgla ) mice. Neuroscience90:717–728. [DOI] [PubMed] [Google Scholar]
  75. Rhyu, I. J., Oda, S., Uhm, C. S., Kim, H., Suh, Y. S., and Abbott, L. C. (1999b). Morphologic investigation of rolling mouse Nagoya (tgrol /tgrol ) cerebellar Purkinje cells: An ataxic mutant, revisited. Neurosci. Lett.266:49–52. [DOI] [PubMed] [Google Scholar]
  76. Saegusa, H., Kurihara, T., Zong, S., Kazuno, A., Matsuda, Y., Nonaka, T., Han, W., Toriyama, H., and Tanabe, T. (2001). Suppression of inflammatory and neuropathic pain symptoms in mice lacking the N-type Cap2+ channel. EMBO J. 20:2349–2356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Saegusa, H., Kurihara, T., Zong, S., Minowa, O., Kazuno, A., Han, W., Matsuda, Y., Yamanaka, H., Osanai, M., Noda, T., and Tanabe, T. (2000). Altered pain responses in mice lacking β1E subunit of the voltage-dependent Cap2+ channel. Proc. Natl. Acad. Sci. USA97:6132–6137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Sandoz, G., Bichet, D., Cornet, V., Mori, Y., Felix, R., and De Waard, M. (2001). Distinct properties and differential beta subunit regulation of two C-terminal isoforms of the P/Q-type Cap2+-channel β1A subunit. Eur. J. Neurosci. 14:987–997. [DOI] [PubMed] [Google Scholar]
  79. Sawada, K., Komatsu, S., Haga, H., Sun, X. Z., Hisano, S., and Fukui, Y. (1999). Abnormal expression of tyrosine hydroxylase immunoreactivity in cerebellar cortex of ataxic mutant mice. Brain Res. 829:107–112. [DOI] [PubMed] [Google Scholar]
  80. Scott, V. E., De Waard, M., Liu, H., Gurnett, C. A., Venzke, D. P., Lennon, V. A., and Campbell, K. P. (1996). β subunit heterogeneity in N-type Cap2+ channels. J. Biol. Chem. 271:3207–3212. [DOI] [PubMed] [Google Scholar]
  81. Seagar, M., Leveque, C., Charvin, N., Marqueze, B., Martin-Moutot, N., Boudier, J. A., Boudier, J. L., Shoji-Kasai, Y., Sato, K., and Takahashi, M. (1999). Interactions between proteins implicated in exocytosis and voltage-gated calcium channels. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354:289–297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Sharp, A. H., Black, J. L., III, Dubel, S. J., Sundarraj, S., Shen, J. P., Yunker, A. M., Copeland, T. D., and McEnery, M.W. (2001). Biochemical and anatomical evidence for specialized voltage-dependent calcium channel gamma isoform expression in the epileptic and ataxic mouse, stargaze. Neuroscience105:599–617. [DOI] [PubMed] [Google Scholar]
  83. Snead, O. C., III. (1995). Basic mechanisms of generalized absence seizures. Ann. Neurol.37:146–157. [DOI] [PubMed] [Google Scholar]
  84. Steinlein, O. K., and Noebels, J. L. (2000). Ion channels and epilepsy in man and mouse. Curr. Opin. Genet. Dev. 10:286–291. [DOI] [PubMed] [Google Scholar]
  85. Steriade, M., and Llin´as, R. F. (1988). The functional states of the thalamus and the associated neuronal interplay. Physiol. Rev.68:649–742. [DOI] [PubMed] [Google Scholar]
  86. Talavera, K., Staes, M., Janssens, A., Klugbauer, N., Droogmans, G., Hofmann, F., and Nilius, B. (2001). Aspartate residues of the Glu-Glu-Asp-Asp (EEDD) pore locus control selectivity and permeation of the T-type Cap2+ channel β1G. J. Biol. Chem.276:45628–45635. [DOI] [PubMed] [Google Scholar]
  87. Tanaka, O., Sakagami, H., and Kondo, H. (1995). Localization of mRNAs of voltage-dependent Cap2+-channels: Four subtypes of β1-and β-subunits in developing and mature rat brain. Brain Res. Mol. Brain Res. 30:1–16. [DOI] [PubMed] [Google Scholar]
  88. Uchitel, O. D. (1997). Toxins affecting calcium channels in neurons. Toxicon35:1161–1191. [DOI] [PubMed] [Google Scholar]
  89. Vance, C. L., Begg, C. M., Lee, W. L., Haase, H., Copeland, T.D., and McEnery, M.W. (1998). Differential expression and association of calcium channel β1B and β subunits during rat brain ontogeny. J. Biol. Chem. 273:14495–14502. [DOI] [PubMed] [Google Scholar]
  90. Varadi,G., Mori,Y., Mikala,G., and Schwartz, A. (1995). Molecular determinants ofCap2+ channel function and drug action. Trends Pharmacol. Sci. 16:43–49. [DOI] [PubMed] [Google Scholar]
  91. Wakamori, M., Yamazaki, K., Matsunodaira, H., Teramoto, T., Tanaka, I., Niidome, T., Sawada, K., Nishizawa, Y., Sekiguchi, N., Mori, E., Mori, Y., and Imoto, K. (1998). Single tottering mutations responsible for the neuropathic phenotype of the P-type calcium channel. J. Biol. Chem.273:34857–34867. [DOI] [PubMed] [Google Scholar]
  92. Walker,D., and DeWaard, M. (1998). Subunit interaction sites in voltage-dependent Cap2+ channels: Role in channel function. Trends Neurosci. 21:148–154. [DOI] [PubMed] [Google Scholar]
  93. Wang, X. J., Rinzel, J., and Rogawski, M. A. (1991). A model of the T-type calcium current and the low-threshold spike in thalamic neurons. J. Neurophysiol. 66:839–850. [DOI] [PubMed] [Google Scholar]
  94. Yang, J., Ellinor, P. T., Sather, W. A., Zhang, J. F., and Tsien, R. W. (1993). Molecular determinants of Cap2+ selectivity and ion permeation in L-type Cap2+ channels. Nature366:158–161. [DOI] [PubMed] [Google Scholar]
  95. Yue, Q., Jen, J. C., Nelson, S. F., and Baloh, R. W. (1997). Progressive ataxia due to a missense mutation in a calcium-channel gene. Am. J. Hum. Genet.61:1078–1087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Zamponi, G. W., and Snutch, T. P. (1998). Modulation of voltage-dependent calcium channels by G proteins. Curr. Opin. Neurobiol. 8:351–356. [DOI] [PubMed] [Google Scholar]
  97. Z¨uhlke, R. D., Pitt, G. S., Deisseroth, K., Tsien, R. W., and Reuter, H. (1999). Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature399:159–162. [DOI] [PubMed] [Google Scholar]
  98. Zwingman, T. A., Neumann, P. E., Noebels, J. L., and Herrup, K. (2001). Rocker is a new variant of the voltage-dependent calcium channel gene Cacna1a. J. Neurosci. 21:1169–1178. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cellular and Molecular Neurobiology are provided here courtesy of Springer

RESOURCES