Skip to main content
Cellular and Molecular Neurobiology logoLink to Cellular and Molecular Neurobiology
. 2002 Dec;22(5-6):805–811. doi: 10.1023/A:1021821427540

Depolarization-Evoked GABA Release from Myenteric Plexus Is Partially Coupled to L-, N-, and P/Q-Type Calcium Channels

Helton J Reis 1, Fabrício V Bíscaro 1, Marcus V Gomez 1, Marco A Romano-Silva 1,2
PMCID: PMC11533751  PMID: 12585697

Abstract

1. There are many evidences suggesting that γ-aminobutyrate (GABA) is an important neurotransmitter and/or neuromodulator in the gut.

2. Using the myenteric plexus-longitudinal muscle preparation from the guinea pig ileum, we investigated the evoked release of [3H] GABA from enteric neurons by electrical pulses or high KCl, which occurs in a calcium-dependent and -independent way. In addition, using selective calcium channel blockers, we report the participation of distinct subtypes of calcium channels in the evoked release, showing a minor participation of L- and Q-type calcium channels, while N- and P-type have a participation of approximately 15%, each. However, regardless of the combination of Ca2+ channel blockers, we did not observe an inhibition greater than 50% of the calcium-dependent component of [3H] GABA release.

3. Thus, while the observed Ca2+-independent release mostly probable occur via reversal of the membrane GABA transporter, in our conditions, a considerable portion of the Ca2+-dependent evoked release of [3H] GABA is not coupled to L-, N-, or P/Q-type calcium channels, suggesting the involvement of intracellular calcium stores or other ways of getting calcium across the membrane.

Keywords: myenteric plexus, GABA release, calcium channels

REFERENCES

  1. Arias, C., Sitges, M., and Tapia, R. (1984) Stimulation of [p3H]γ-aminobutyric acid release by calcium chelators in synaptosomes. J. Neurochem.42(6):1507–1514. [DOI] [PubMed] [Google Scholar]
  2. Borden, L. A. (1996) GABA transporter heterogeneity: Pharmacology and cellular localization. Neurochem. Int.29(4):335–356. [DOI] [PubMed] [Google Scholar]
  3. Borden, L. A., Dhar, T. G., Smith, K. E., Branchek, T. A., Gluchowski, C., and Weinshank, R. L. (1994) Cloning of the human homologue of the GABA transporter GAT-3 and identification of a novel inhibitor with selectivity for this site. Receptors Channels2(3):207–213. [PubMed] [Google Scholar]
  4. Clark, J. A., Deutch, A. Y., Gallipoli, P. Z., and Amara, S. G. (1992) Functional expression and CNS distribution of a ¯-alanine-sensitive neuronal GABA transporter. Neuron9(2):337–348. [DOI] [PubMed] [Google Scholar]
  5. Dogiel, A. S. (1899). Uber den Bau der Ganglien in den Geflechten des Darmes und der Gallenblase des Mesechen und der Saugethiere. Arch. Anat. Physiol. Leipzig., Anat. Abt., Jg.1899:130–158. [Google Scholar]
  6. Fletcher, E. L., Clark, M. J., and Furness, J. B. (2002) Neuronal and glial localization ofGABAtransporter immunoreactivity in the myenteric plexus. Cell Tissue Res.308:339–346. [DOI] [PubMed] [Google Scholar]
  7. Gadea, A., and Lopez-Colome, A. M. (2001) Glial transporters for glutamate, glycine, and GABA: II. GABA transporters. J. Neurosci. Res.63:461–468. [DOI] [PubMed] [Google Scholar]
  8. Guastella, J., Nelson, N., Nelson, H., Czyzyk, L., Keynan, S., Miedel, M. C., Davidson, N., Lester, H. A., and Kanner, B. I. (1990) Cloning and expression of a rat brain GABA transporter. Science249(4974):1303–1306. [DOI] [PubMed] [Google Scholar]
  9. Hilgemann, D.W., and Lu, C. C. (1999) GAT1 (GABA:NaC:Cl¡) cotransport function. Database reconstruction with an alternating access model. J. Gen. Physiol.114(3):459–475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hirst, G. D. S., Holman, M. E., and Spence, I. (1974) Two types of neurons in the myenteric plexus of duodenum in the guinea pig. J. Physiol.236:303–326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hiscock, J. J., Murphy, S., and Willoughby, J. O. (2000) Confocal microscopic estimation of GABAergic nerve terminals in the central nervous system. J. Neurosci. Methods95(1):1–11. [DOI] [PubMed] [Google Scholar]
  12. Holzer, P., Schicho, R., Holzer-Petsche, U., and Lippe, I. T. (2001) The gut as a neurological organ. Wien Klin. Wochenschr.113(17–18):647–660. [PubMed] [Google Scholar]
  13. Iversen, L. L., and Johnston, G. A. (1971) GABA uptake in rat central nervous system: Comparison of uptake in slices and homogenates and the effects of some inhibitors. J. Neurochem.18(10):1939–1950. [DOI] [PubMed] [Google Scholar]
  14. Jessen, K. R., Hills, J. M., Dennison, M. E., and Mirsky, R. (1983) γ-Aminobutyrate as an autonomic neurotransmitter: Release and uptake of [3H]γ-aminobutyrate in guinea pig large intestine and cultured enteric neurons using physiological methods and electron microscopic autoradiography. Neuroscience10(4):1427–1442. [DOI] [PubMed] [Google Scholar]
  15. Jessen, K. R., Mirsky, R., Dennison, M. E., and Burnstock, G. (1979) GABA may be a neurotransmitter in the vertebrate peripheral nervous system. Nature281(5726):71–74. [DOI] [PubMed] [Google Scholar]
  16. Jursky, F., and Nelson, N. (1996) Developmental expression of GABA transporters GAT1 and GAT4 suggests involvement in brain maturation. J. Neurochem.67(2):857–867. [DOI] [PubMed] [Google Scholar]
  17. Jursky, F., Tamura, S., Tamura, A., Mandiyan, S., Nelson, H., and Nelson, N. (1994) Structure, function and brain localization of neurotransmitter transporters. J. Exp. Biol.196:283–295. [DOI] [PubMed] [Google Scholar]
  18. Kerr, D. I., and Krantis, A. (1983) Uptake and stimulus-evoked release of [3H]γ-aminobutyric acid by myenteric nerves of guinea-pig intestine. Br. J. Pharmacol.78(2):271–276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kirchgessner, A. L., and Liu, M. T. (1999) Differential localization of Cap2+ channel γp1 subunits in the enteric nervous system: Presence of γp1B channel-like immunoreactivity in intrinsic primary afferent neurons. J. Comp. Neurol.409(1):85–104. [DOI] [PubMed] [Google Scholar]
  20. Langley, J. N. (1921). The Autonomic Nervous System.W. Heffer, Cambridge, UK. [Google Scholar]
  21. Liu, Q. R., Lopez-Corcuera, B., Mandiyan, S., Nelson, H., and Nelson,N. (1993) Molecular characterization of four pharmacologically distinct γ-aminobutyric acid transporters in mouse brain. J. Biol. Chem.268(3):2106–2112. [PubMed] [Google Scholar]
  22. Miki, Y., Taniyama, K., Tanaka, C., and Tobe, T. (1983) GABA, glutamic acid decarboxylase, and GABA transaminase levels in the myenteric plexus in the intestine of humans and other mammals. J. Neurochem.40(3):861–865. [DOI] [PubMed] [Google Scholar]
  23. Nelson, H., Mandiyan, S., and Nelson, N. (1990) Cloning of the human brain GABA transporter. FEBS Lett.269(1):181–184. [DOI] [PubMed] [Google Scholar]
  24. Nishi, S., and North, R. A. (1973). Intracellular recording from the myenteric plexus of the guinea pig ileum. J. Physiol.231:471–491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Raiteri, L., Stigliani, S., Zedda, L., Raiteri, M., and Bonanno,G. (2002) Multiple mechanisms of transmitter release evoked by “pathologically” elevated extracellular [Kp+]: Involvement of transporter reversal and mitochondrial calcium. J. Neurochem.80:706–714. [DOI] [PubMed] [Google Scholar]
  26. Rasola, A., Galietta, L. J., Barone, V., Romeo, G., Bagnasco, S. (1995) Molecular cloning and functional characterization of a GABA/betaine transporter from human kidney. FEBS Lett.373(3):229–233. [DOI] [PubMed] [Google Scholar]
  27. Reis, H. J., Massensini, A. R., Prado, M. A., Gomez, R. S., Gomez, M. V., and Romano-Silva, M. A. (2000) Calcium channels coupled to depolarization-evoked glutamate release in the myenteric plexus of guinea-pig ileum. Neuroscience101(1):237–242. [DOI] [PubMed] [Google Scholar]
  28. Sano, I., Taniyama, K., and Tanaka, C. (1989)Cholecystokinin, but not gastrin, induces γ-aminobutyric acid release from myenteric neurons of the guinea pig ileum. J. Pharmacol. Exp. Ther.248(1):378–383. [PubMed] [Google Scholar]
  29. Starodub, A. M., and Wood, J.D. (1999) Selectivity of ω-CgTx-MVIIC toxin from Conus magus on calcium currents in enteric neurons. Life Sci.64(26):305–310. [DOI] [PubMed] [Google Scholar]
  30. Taniyama, K., Kusunoki, M., Saito, N., and Tanaka, C. (1982) Release of γ-aminobutyric acid from cat colon. Science217(4564):1038–1040. [DOI] [PubMed] [Google Scholar]
  31. Tapia, R., and Salazar, C. (1989) Chelation of endogenous membrane calcium inhibits γ-aminobutyric acid uptake in synaptosomes. J. Neurosci. Res.24(2):293–298. [DOI] [PubMed] [Google Scholar]
  32. Wood, J. D. (1994) Application of classification schemes to the enteric nervous system. J. Auton. Nerv. Syst.48(1):17–29. [DOI] [PubMed] [Google Scholar]
  33. Yamauchi, A., Uchida, S., Kwon, H. M., Preston, A. S., Robey, R. B., Garcia-Perez, A., Burg, M. B., and Handler, J. S. (1992) Cloning of a Na(C)-and Cl(¡)-dependent betaine transporter that is regulated by hypertonicity. J. Biol. Chem.267(1):649–652. [PubMed] [Google Scholar]
  34. Yau, W. M., and Verdun, P. R. (1983) Release of γ-aminobutyric acid from guinea pig myenteric plexus synaptosomes. Brain Res.278(1–2):271–273. [DOI] [PubMed] [Google Scholar]

Articles from Cellular and Molecular Neurobiology are provided here courtesy of Springer

RESOURCES