Skip to main content
Cellular and Molecular Neurobiology logoLink to Cellular and Molecular Neurobiology
. 2002 Dec;22(5-6):565–577. doi: 10.1023/A:1021884319363

Signals Involved in Targeting Membrane Proteins to Synaptic Vesicles

Vania F Prado 1, Marco A M Prado 2
PMCID: PMC11533752  PMID: 12585680

Abstract

1. Synaptic vesicles (SVs) mediate fast regulated secretion of classical neurotransmitters. In order to perform their task SVs rely on a restrict set of membrane proteins. The mechanisms responsible for targeting these proteins to the SV membrane are still poorly understood.

2. Likewise, little is known about the intracellular routes taken by these proteins in their way to SV membrane. Recently, several domains and motifs necessary for correct localization of SV proteins have been identified.

3. In this review we summarize the sequence motifs that have been identified in the cytoplasmic domains of SV proteins that are involved in endocytosis and targeting of SVs. We suggest that the vesicular acetylcholine transporter, a protein found predominantly in synaptic vesicles, is perhaps a model protein to understand the pathways and interactions that are used for synaptic vesicle targeting.

Keywords: synaptic vesicle targeting, endocytosis, vesicular transporters, VAChT

REFERENCES

  1. Barbosa, J. Jr., Clarizia, A. D., Gomez, M. V., Romano-Silva, M. A., Prado, V. F., and Prado, M. A. (1997). Effect of protein kinase C activation on the release of [3H]acetylcholine in the presence of vesamicol. J. Neurochem.69:2608–2611. [DOI] [PubMed] [Google Scholar]
  2. Barbosa, J. Jr., Ferreira, L. T., Martins-Silva, C., Santos, M. S., Torres, G. E., Caron, M. G., Gomez, M. V., Ferguson, S. S. G., Prado, M. A. M., and Prado, V. F. (2002). Trafficking of the vesicular acetylcholine transporter in SN56 cells: A dynamin-sensitive step and interaction with the AP-2 adaptor complex. J. Neurochem.82:1221–1228. [DOI] [PubMed] [Google Scholar]
  3. Barbosa, J. J. R., Massensini, A. R., Santos, M. S., Meireles, S. I., Gomez, R. S., Gomez, M.V., Romano-Silva, M. A., Prado, V. F., and Prado, M. A. (1999). Expression of the vesicular acetylcholine transporter, proteins involved in exocytosis, and functional calcium signaling in varicosities and soma of a murine septal cell line. J. Neurochem.73:1881–1893. [PubMed] [Google Scholar]
  4. Bauerfeind, R., and Huttner, W. B. (1993). Biogenesis of constitutive secretory vesicles, secretory granules and synaptic vesicles. Curr. Opin. Cell Biol.5:628–635. [DOI] [PubMed] [Google Scholar]
  5. Blagoveshchenskaya, A. D., Hewitt, E. W., and Cutler, D. F. (1999). Di-leucine signals mediate targeting of tyrosinase and synaptotagmin to synaptic-like microvesicles within PC12 cells. Mol. Biol. Cell10:3979–3990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boehm, M., and Bonifacino, J. S. (2001). Adaptins: The final recount. Mol. Biol. Cell12:2907–2920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bonifacino, J. S., and Dell'Angelica, E. C. (1999). Molecular bases for the recognition of tyrosine-based sorting signals. J. Cell Biol.145:923–926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bradke, F., and Dotti, C. G. (1998). Membrane traffic in polarized neurons. Biochim. Biophys. Acta.1404:245–258. [DOI] [PubMed] [Google Scholar]
  9. Cameron, P., Mundigl, O., De Camilli, P. (1993). Traffic of synaptic vesicle proteins in polarized and nonpolarized cells. J. Cell Sci. Suppl.17:93–100. [DOI] [PubMed] [Google Scholar]
  10. Cameron, P. L., Südhof, T. C., Jahn, R., and De Camilli, P. (1991). Colocalization of synaptophysin with transferrin receptors: Implications for synaptic vesicle biogenesis. J. Cell Biol.115:151–164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chapman, E. R., Desai, R. C., Davis, A. F., and Tornehl, C. K. (1998). Delineation of the oligomerization, AP-2 binding, and synprint binding region of the C2B domain of synaptotagmin. J Biol Chem. 273:32966–32972. [DOI] [PubMed] [Google Scholar]
  12. Chen, H. J., Yuan, J., and Lobel, P. (1997). Systematic mutational analysis of the cation-independent mannose 6-phosphate/insulin-like growth factor II receptor cytoplasmic domain. An acidic cluster containing a key aspartate is important for function in lysosomal enzyme sorting. J. Biol. Chem.272:7003–7012. [DOI] [PubMed] [Google Scholar]
  13. Cho, G.W., Kim, M. H., Chai, Y. G., Gilmor, M. L., Levey, A. I., and Hersh, L. B. (2000). Phosphorylation of the rat vesicular acetylcholine transporter. J. Bol. Chem.275:19942–19948. [DOI] [PubMed] [Google Scholar]
  14. Daly,C., and Ziff, E.B. (2002). Ca2C-dependent formation of a dynamin-synaptophysin complex: Potential role in synaptic vesicle endocytosis. J. Biol. Chem.277:9010–9015. [DOI] [PubMed] [Google Scholar]
  15. De Camilli, P., and Jahn, R. (1990). Pathways to regulated exocytosis in neurons. Annu. Rev. Physiol.52:625–645. [DOI] [PubMed] [Google Scholar]
  16. Dietrich, J., Kastrup, J., Nielsen, B. L., Odum, N., and Geisler, C. (1997). Regulation and function of the CD3° DXXXLL motif: A binding site for adaptor protein-1 and adaptor protein-2 in vitro. J. Cell Biol.138:271–281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Erickson, J. D., and Varoqui, H. (2000). Molecular analysis of vesicular amine transporter function and targeting to secretory organelles. FASEB J.14:2450–2458. [DOI] [PubMed] [Google Scholar]
  18. FaÚndez, V., Horng, J. T., and Kelly, R. B. (1998). A function for the AP3 coat complex in synaptic vesicle formation from endosomes. Cell93:423–432. [DOI] [PubMed] [Google Scholar]
  19. Fernandez-Chacon, R., and Sudhof, T. C. (1999). Genetics of synaptic vesicle function: Toward the complete functional anatomy of an organelle. Annu. Rev. Physiol.61:753–776. [DOI] [PubMed] [Google Scholar]
  20. Ford, M. G., Pearse, B. M., Higgins, M. K., Vallis, Y., Owen, D. J., Gibson, A., Hopkins, C. R., Evans, P. R., and McMahon, H. T. (2001). Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science291:1051–1055. [DOI] [PubMed] [Google Scholar]
  21. Gilmor, M. L., Nash, N. R., Roghani, A., Edwards, R. H., Yi, H., Hersch, S. M., and Levey, A. I. (1996). Expression of the putative vesicular acetylcholine transporter in rat brain and localization in cholinergic synaptic vesicles. J. Neurosci.16:2179–2190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. González-Gaitán, M., and Jäckle, H. (1997). Role of Drosophila alpha-adaptin in presynaptic vesicle recycling. Cell88:767–776. [DOI] [PubMed] [Google Scholar]
  23. Grote, E., Hao, J. C., Bennett, M. K., and Kelly, R. B. (1995). A targeting signal in VAMP regulating transport to synaptic vesicles. Cell81:581–589. [DOI] [PubMed] [Google Scholar]
  24. Grote, E., and Kelly, R.B. (1996). Endocytosis ofVAMPis facilitated by a synaptic vesicle targeting signal. J. Cell Biol.132:537–547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hannah, M. J., Schmidt, A. A., and Huttner, W. B. (1999). Synaptic vesicle biogenesis. Annu. Rev. Cell Dev. Biol.15:733–798. [DOI] [PubMed] [Google Scholar]
  26. Hao, J. C., Salem, N., Peng, X. R., Kelly, R. B., and Bennett, M. K. (1997). Effect of mutations in vesicleassociated membrane protein (VAMP) on the assembly of multimeric protein complexes. J. Neurosci.17:1596–15603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Haucke, V., and De Camilli, P. (1999). AP-2 recruitment to synaptotagmin stimulated by tyrosine-based endocytic motifs. Science285:1268–1271. [DOI] [PubMed] [Google Scholar]
  28. Haucke,V., Wenk, M. R., Chapman, E. R., Farsad, K., and De Camilli, P. (2000). Dual interaction of synaptotagmin with μ2-and alpha-adaptin facilitates clathrin-coated pit nucleation. EMBO J.19:6011–6019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Huttner, W. B., Ohashi, M., Kehlenbach, R. H., Barr, F. A., Bauerfeind, R., Braunling, O., Corbeil, D., Hannah, M., Pasolli, H. A., and Schmidt, A. (1995). Biogenesis of neurosecretory vesicles. Cold Spring Harb. Symp. Quant. Biol.60:315–627. [DOI] [PubMed] [Google Scholar]
  30. Jarousse, N., and Kelly, R. B. (2001). Endocytotic mechanisms in synapses. Curr. Opin. Cell Biol.13:461–469. [DOI] [PubMed] [Google Scholar]
  31. Johnston, P. A., Cameron, P. L., Stukenbrok, H., Jahn, R., De Camilli, P., and Sudhof, T. C. (1989). Synaptophysin is targeted to similar microvesicles in CHO and PC12 cells. EMBO J.8:2863–2872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Kelly RB (1991). Secretory granule and synaptic vesicle formation. Curr. Opin. Cell Biol.3:654–660. [DOI] [PubMed] [Google Scholar]
  33. Kirchhausen, T. (1999). Adaptors for clathrin-mediated traffic. Annu. Rev. Cell Dev. Biol.15:705–732. [DOI] [PubMed] [Google Scholar]
  34. Kongsvik, T. L., Honing, S., Bakke, O., and Rodionov, D. G. (2002). Mechanism of interaction between leucine-based sorting signals from the invariant chain and clathrin-associated adaptor protein complexes AP1 and AP2. J. Biol. Chem.277:16484–16488. [DOI] [PubMed] [Google Scholar]
  35. Krantz, D. E., Waites, C., Oorschot, V., Liu, Y., Wilson, R. I., Tan, P. K., Klumperman, J., and Edwards, R. H. (2000). A phosphorylation site regulates sorting of the vesicular acetylcholine transporter to dense core vesicles. J. Cell Biol.149:379–396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Krasnov, P. A., and Enikolopov, G. (2000). Targeting of synaptotagmin to neurite terminals in neuronally differentiated PC12 cells. J. Cell Sci.113:1389–1404. [DOI] [PubMed] [Google Scholar]
  37. Leube, R. E., Kaiser, P., Seiter, A., Zimbelmann, R., Franke, W. W., Rehm, H., Knaus, P., Prior, P., Betz, H., Reinke, H., Beyreuther, K., and Wiedenmann, B. (1987). Synaptophysin: Molecular organization and mRNA expression as determined from cloned cDNA. EMBO J.6:3261–3268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Linstedt, A. D., and Kelly, R. B. (1991). Synaptophysin is sorted from endocytotic markers in neuroendocrine PC12 cells but not transfected fibroblasts. Neuron7: 309–317. [DOI] [PubMed] [Google Scholar]
  39. Liu, Y., Edwards, R. H. (1997). Differential localization of vesicular acetylcholine and monoamine transporters in PC12 cells but not CHO cells. J. Cell Biol.139(4):907–916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Liu, Y., Schweitzer, E. S., Nirenberg, M. J., Pickel, V. M., Evans, C. J., and Edwards, R. H. (1994). Preferential localization of a vesicular monoamine transporter to dense core vesicles in PC12 cells. J. Cell Biol.127:1419–1433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Nakata, T., Terada, S., and Hirokawa, N. (1998). Visualization of the dynamics of synaptic vesicle and plasma membrane proteins in living axons. J. Cell Biol.140(3):659–674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Nielsen, M. S., Madsen, P., Christensen, E. I., Nykjaer, A., Gliemann, J., Kasper, D., Pohlmann, R., and Petersen, C. M. (2001). The sortilin cytoplasmic tail conveys Golgi-endosome transport and binds the VHS domain of the GGA2 sorting protein. EMBO J.20:2180–2190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Nirenberg, M. J., Liu, Y., Peter, D., Edwards, R. H., and Pickel, V. M. (1995). The vesicular monoamine transporter 2 is present in small synaptic vesicles and preferentially localizes to large dense core vesicles in rat solitary tract nuclei. Proc. Natl. Acad. Sci. U.S.A.92:8773–8777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Ogata, S., and Fukuda, M. (1994). Lysosomal targetion of Limp II membrane glycoprotein requires a novel Leu-lle motif at a particular position in its cytoplasmic tail. J. Biol. Chem.269:5210–5217. [PubMed] [Google Scholar]
  45. Okada, Y., Yamazaki, H., Sekine-Aizawa, Y., and Hirokawa, N. (1995). The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell81:769–780. [DOI] [PubMed] [Google Scholar]
  46. Parsons, S.M. (2000). Transport mechanisms in acetylcholine and monoamine storage. FASEB J.14:2423–2434. [DOI] [PubMed] [Google Scholar]
  47. Pond, L., Kuhn, L. A., Teyton, L., Schutze, M. P., Tainer, J. A., Jackson, M. R., and Peterson, P. A. (1995). A role for acidic residues in di-leucine motif-based targeting to the endocytic pathway. J. Biol. Chem.270:19989–19997. [DOI] [PubMed] [Google Scholar]
  48. Prado, M. A. M., Reis, R. A. M., Prado, V. F., de Mello, M. C., Gomez, M. V., and de Mello, F. G. (2002). Regulation of acetylcholine synthesis and storage. Neurochem. Int.41:291–299. [DOI] [PubMed] [Google Scholar]
  49. Puertollano, R., Aguilar, R. C., Gorshkova, I., Crouch, R. J., and Bonifacino, J. S. (2001). Sorting of mannose 6-phosphate receptors mediated by the GGAs. Science292:1712–1716. [DOI] [PubMed] [Google Scholar]
  50. Rapoport, I., Chen, Y. C., Cupers, P., Shoelson, S. E., and Kirchhausen, T. (1998). Dileucine-based sorting signals bind to the beta chain of AP-1 at a site distinct and regulated differently from the tyrosinebased motif-binding site. EMBO J.17:2148–2155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Régnier-Vigouroux, A., Tooze, S. A., and Huttner, W.B. (1991). Newly synthesized synaptophysin is transported to synaptic-like microvesicles via constitutive secretory vesicles and the plasma membrane. EMBO J.10:3589–3601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Robinson, M. S., and Bonifacino, J. S. (2001). Adaptor-related proteins. Curr. Opin. Cell Biol.13:444–453. [DOI] [PubMed] [Google Scholar]
  53. Rodionov, D. G., and Bakke, O. (1998). Medium chains of adaptor complexes AP-1 and AP-2 recognize leucine-based sorting signals from the invariant chain. J. Biol. Chem.273:6005–6008. [DOI] [PubMed] [Google Scholar]
  54. Roghani, A., Shirzadi, A., Butcher, L. L., and Edwards, R. H. (1998). Distribution of the vesicular transporter for acetylcholine in the rat central nervous system. Neuroscience82:1195–1212. [DOI] [PubMed] [Google Scholar]
  55. Salem, N., Faundez, V., Horng, J. T., and Kelly, R. B. (1998). A v-SNARE participates in synaptic vesicle formation mediated by the AP3 adaptor complex. Nat. Neurosci.1:551–556. [DOI] [PubMed] [Google Scholar]
  56. Santos, M. S., Barbosa, J. Jr., Veloso, G. S., Ribeiro, F., Kushmerick, C., Gomez, M. V., Ferguson, S. S., Prado, V. F., and Prado, M. A. (2001). Trafficking of green fluorescent protein taggedvesicular acetylcholine transporter to varicosities in a cholinergic cell line. J. Neurochem.78:1104–1113. [DOI] [PubMed] [Google Scholar]
  57. Schäfer, M. K., Eiden, L. E., and Weihe, E. (1998). Cholinergic neurons and terminal fields revealed by immunohistochemistry for the vesicular acetylcholine transporter. I: Central nervous system. Neuroscience84:331–359. [DOI] [PubMed] [Google Scholar]
  58. Schmidt, A., Hannah, M. J., and Huttner, W. B. (1997). Synaptic-like microvesicles of neuroendocrine cells originate from a novel compartment that is continuous with the plasma membrane and devoid of transferrin receptor. J. Cell Biol.137:445–458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Shi, G., FaÚndez, V., Roos, J., Dell'Angelica, E. C., and Kelly, R. B. (1998). Neuroendocrine synaptic vesicles are formed in vitro by both clathrin-dependent and clathrin-independent pathways. J. Cell Biol.143:947–955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Shiba, T., Takatsu, H., Nogi, T., Matsugaki, N., Kawasaki, M., Igarashi, N., Suzuki, M., Kato, R., Earnest, T., Nakayama, K., and Wakatsuki, S. (2002). Structural basis for recognition of acidic-cluster dileucine sequence by GGA1. Nature415:937–941. [DOI] [PubMed] [Google Scholar]
  61. Sollner, T., Whiteheart, S. W., Brunner, M., Erdjument-Bromage, H., Geromanos, S., Tempst, P., and Rothman, J. E. (1993). SNAP receptors implicated in vesicle targeting and fusion. Nature362:318–324. [DOI] [PubMed] [Google Scholar]
  62. Südhof, T. C. (1995). The synaptic vesicle cycle:Acascade of protein-protein interactions. Nature375:645–653. [DOI] [PubMed] [Google Scholar]
  63. Südhof, T. C. (2000). The synaptic vesicle cycle revisited. Neuron28:317–320. [DOI] [PubMed] [Google Scholar]
  64. Südhof, T. C. (2002). Synaptotagmins:Why so many? J. Biol. Chem.277:7629–7632. [DOI] [PubMed] [Google Scholar]
  65. Sudhof, T. C., Lottspeich, F., Greengard, P., Mehl, E., and Jahn, R. (1987). A synaptic vesicle protein with a novel cytoplasmic domain and four transmembrane regions. Science238:1142–1144. [DOI] [PubMed] [Google Scholar]
  66. Sudhof, T. C., and Rizo, J. (1996). Synaptotagmins: C2-domain proteins that regulate membrane traffic. Neuron17:379–388. [DOI] [PubMed] [Google Scholar]
  67. Takatsu, H., Katoh, Y., Shiba, Y., and Nakayama, K. (2001). Golgi-localizing, gamma-adaptin ear homology domain, ADP-ribosylation factor-binding (GGA) proteins interact with acidic dileucine sequences within the cytoplasmic domains of sorting receptors through their Vps27p/Hrs/STAM(VHS) domains. J. Biol. Chem.276:28541–28545. [DOI] [PubMed] [Google Scholar]
  68. Tan, P. K., Waites, C., Liu, Y., Krantz, D. E., and Edwards, R. H. (1998). A leucine-based motif mediates the endocytosis of vesicular monoamine and acetylcholine transporters. J. Biol. Chem.273:17351–17360. [DOI] [PubMed] [Google Scholar]
  69. Tikkanen, R., Obermuller, S., Denzer, K., Pungitore, R., Geuze, H. J., von Figura, K., and Honing, S. (2000). The dileucine motif within the tail of MPR46 is required for sorting of the receptor in endosomes. Traffic. 1:631–640. [DOI] [PubMed] [Google Scholar]
  70. Tooze, A. S. (1998). Biogenesis of secretory granules in the trans-Golgi network of neuroendocrine and endocrine cells. Biochim. Biophys. Acta1404:231–244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Tsukita, S., and Ishikawa, H. (1980). The movement of membranous organelles in axons. Electron microscopic identification of anterogradely and retrogradely transported organelles. J. Cell. Biol.84:513–530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Varoqui, H., and Erickson, J. D. (1998). The cytoplasmic tail of the vesicular acetylcholine transporter contains a synaptic vesicle targeting signal. J. Biol. Chem.273:9094–9098. [DOI] [PubMed] [Google Scholar]
  73. Waites, C. L., Mehta, A., Tan, P. K., Thomas,G., Edwards, R. H., and Krantz, D. E. (2001). An acidic motif retains vesicular monoamine transporter 2 on large dense core vesicles. J. Cell Biol.152:1159–1168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Weihe, E., Tao-Cheng, J. H., Schafer, M. K., Erickson, J. D., and Eiden, L. E. (1996). Visualization of the vesicular acetylcholine transporter in cholinergic nerve terminals and its targeting to a specific population of small synaptic vesicles. Proc. Natl. Acad. Sci. U.S.A.. 93:3547–3552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. West, A. E., Neve, R. L., and Buckley, K.M. (1997). Targeting of the synaptic vesicle protein synaptobrevin in the axon of cultured hippocampal neurons: Evidence for two distinct sorting steps. J. Cell Biol.139:917–927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Zhang, J. Z., Davletov, B. A., Sudhof, T. C., and Anderson, R. G. (1994). Synaptotagmin I is a high affinity receptor for clathrin AP-2: Implications for membrane recycling. Cell78:751–760. [DOI] [PubMed] [Google Scholar]
  77. Zhu, Y., Doray, B., Poussu, A., Lehto, V. P., and Kornfeld, S. (2001). Binding of GGA2 to the lysosomal enzyme sorting motif of the mannose 6-phosphate receptor. Science292:1716–1718. [DOI] [PubMed] [Google Scholar]

Articles from Cellular and Molecular Neurobiology are provided here courtesy of Springer

RESOURCES