Abstract
1. The unique biochemical properties of Ca2+/calmodulin (CaM)-dependent protein kinase II have made this enzyme one of the paradigmatic models of the forever searched “memory molecule.”
2. In particular, the central participation of CaMKII as a sensor of the Ca2+ signals generated by activation of NMDA receptors after the induction of long-term plastic changes, has encouraged the use of pharmacological, genetic, biochemical, and imaging tools to unveil the role of this kinase in the acquisition, consolidation, and expression of different types of memories.
3. Here we review some of the more exciting discoveries related to the mechanisms involved in CaMKII activation and synaptic plasticity.
Keywords: CaMKII, memory, synaptic plasticity
REFERENCES
- Allison, D., Chervin, A., Gelfand, V., and Craig, A. (2000). Postsynaptic scaffolds of excitatory and inhibitory synapses in hippocampal neurons: Maintenance of core components independent of actin filaments and microtubules. J. Neurosci.20:4545–4554. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barria, A., Derkach, V., and Soderling, T. (1997a). Identification of the Ca2C/calmodulin-dependent protein kinase II regulatory phosphorylation site in the alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate-type glutamate receptor. J. Biol. Chem.272:32727–32730. [DOI] [PubMed] [Google Scholar]
- Barria, A., Muller, D., Derkach, V., Griffith, L., and Soderling, T. (1997b). Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science276:2042–2045. [DOI] [PubMed] [Google Scholar]
- Bayer, K., De Koninck, P., Leonard, A., Hell, J., and Schulman, H. (2001). Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature411:801–805. [DOI] [PubMed] [Google Scholar]
- Braun, A., and Schulman, H. (1995). The multifunctional Cap2C/calmodulin-dependent protein kinase: From form to function. Annu. Rev. Physiol.57:417–4452. [DOI] [PubMed] [Google Scholar]
- Brocke, L., Srinivasan, M., and Schulman, H. (1995). Developmental and regional expression of multifunctional Cap2C/calmodulin-dependent protein kinase isoforms in rat brain. J. Neurosci.15:6797–6808. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Broutman, G., and Baudry, M. (2001). Involvement of the secretory pathway for AMPA receptors in NMDA-induced potentiation in hippocampus. J. Neurosci.21:27–34. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brun,V., Ytterbo, K., Morris, R., Moser, M., and Moser, E. (2001). Retrograde amnesia for spatial memory induced by NMDA receptor-mediated long-term potentiation. J. Neurosci.21:356–362. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cammarota, M., Bernabeu, R., Levi De Stein, M., Izquierdo, I., Medina, J. (1998). Learning-specific, time-dependent increases in hippocampal Cap2C/calmodulin-dependent protein kinase II activity and AMPA GluR1 subunit immunoreactivity. Eur. J. Neurosci.10:2669–2676. [DOI] [PubMed] [Google Scholar]
- Cammarota, M., Izquierdo, I.,Wolfman, C., Levi de Stein, M., Bernabeu, R., Jerusalinsky, D., and Medina, J. (1995). Inhibitory avoidance training induces rapid and selective changes in 3H-AMPA receptor binding in the rat hippocampal formation. Neurobiol. Learn. Mem.64:257–264. [DOI] [PubMed] [Google Scholar]
- Chen, H., Rojas-Soto, M., Oguni, A., and Kennedy,M. (1998). A synaptic Ras-GTPase activating protein (p135 SynGAP) inhibited by CaM kinase II. Neuron20:895–904. [DOI] [PubMed] [Google Scholar]
- DeKoninck, P., and Schulman, H. (1998). Sensitivity ofCaMkinase II to the frequency ofCap2C oscillations. Science279:227–230. [DOI] [PubMed] [Google Scholar]
- Derkach, V., Barria, A., and Soderling, T. (1999). Cap2C/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc. Natl. Acad. Sci. U.S.A.96:3269–3274. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Engert, F., and Bonhoeffer, T. (1999). Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature399:66–70. [DOI] [PubMed] [Google Scholar]
- Frankland, P., O'Brien, C., Ohno, M., Kirkwood, A., and Silva, A. (2001). Alpha-CaMKII-dependent plasticity in the cortex is required for permanent memory. Nature411:309–313. [DOI] [PubMed] [Google Scholar]
- Fukunaga, K., Muller, D., and Miyamoto, E. (1995). Increased phosphorylation of Cap2C/calmodulindependent protein kinase II and its endogenous substrates in the induction of long-term potentiation. J. Biol. Chem.270:6119–6124. [DOI] [PubMed] [Google Scholar]
- Fukunaga, K., Stoppini, L., Miyamoto, E., and Muller, D. (1993). Long term potentiation is associated with an increased activity of Ca2C/calmodulin-dependent protein kinase II. J. Biol. Chem.268:7863–7867. [PubMed] [Google Scholar]
- Gardoni, F., Bellone, C., Cattabeni, F., and Di Luca, M. (2001). Protein kinase C activation modulates alpha-calmodulin kinase II binding to NR2A subunit of N-methyl-D-aspartate receptor complex. J. Biol. Chem.276:7609–7613. [DOI] [PubMed] [Google Scholar]
- Griffith, L., Verselis, L., Aitken, K., Kyriacou, C., Danho, W., and Greenspan, R., (1993). Inhibition of calcium/calmodulin-dependent protein kinase in Drosophila disrupts behavioral plasticity. Neuron10:501–509. [DOI] [PubMed] [Google Scholar]
- Hanson, P., Meyer,T., Stryer, L., and Schulman, H. (1994). Dual role of calmodulin in autophosphorylation of multifunctional CaM kinase may underlie decoding of calcium signals. Neuron12:943–956. [DOI] [PubMed] [Google Scholar]
- Hanson, P., and Schulman, H. (1992). Neuronal Cap2C/calmodulin-dependent protein kinases. Annu. Rev. Biochem.61:559–601. [DOI] [PubMed] [Google Scholar]
- Hayashi, Y., Shi, S., Esteban, J., Piccini, A., Poncer, J., and Malinow, R. (2000). Driving AMPA receptors into synapses by LTP and CaMKII: Requirement for GluR1 and PDZ domain interaction. Science287:2262–2267. [DOI] [PubMed] [Google Scholar]
- Hinds, H., Tonegawa, S., and Malinow, R. (1998). CA1 long-term potentiation is diminished but present in hippocampal slices from ®CaMKII mutant mice. Learn. Mem.5:344–354. [PMC free article] [PubMed] [Google Scholar]
- Holscher, C. (1997). Long-term potentiation: A good model for learning and memory? Prog. Neuropsychopharmacol. iBiol. Psychiatry21:47–68. [DOI] [PubMed] [Google Scholar]
- Izquierdo, I., Da Cunha, C., Rosat, R., Ferreira, M. B. C., Jerusalinsky, D., and Medina, J. H. (1992). Neurotransmitter receptors involved in memory processing by the amygdala, septum and hippocampus of rats. Behav. Neural Biol.58:16–25. [DOI] [PubMed] [Google Scholar]
- Izquierdo, I., Medina, J., Vianna, M., Izquierdo, L., and Barros,D. (1999). Separate mechanisms for shortand long-term memory. Behav. Brain Res.103:1–11. [DOI] [PubMed] [Google Scholar]
- Kim, J., Liao, D., Lau, L., and Huganir, R. (1998). SynGAP: A synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron20:683–691. [DOI] [PubMed] [Google Scholar]
- Koh, Y., Popova, E., Thomas, U., Griffith, L., and Budnik, V. (1999). Regulation of DLG localization at synapses by CaMKII-dependent phosphorylation. Cell98:353–363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liao, D., Hessler,N., and Malinow,R. (1995). Activation of postsynaptically silent synapses during pairinginduced LTP in CA1 region of hippocampal slice. Nature375:400–404. [DOI] [PubMed] [Google Scholar]
- Liao, D., Scannevin, R., and Huganir, R. (2001). Activation of silent synapses by rapid activity-dependent synaptic recruitment of AMPA receptors. J. Neurosci.21:6008–6017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lledo, P., Hjelmstad, G., Mukherfi, S., Soderling, T., Malenka, R., and Nicoll, R. (1995). Cap2C/calmodulindependent protein kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. Proc. Natl. Acad. Sci.92:11175–11179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mabuchi, T., Kitagawa, K., Kuwabara, K., Takasawa, K., Ohtsuki, T., Xia, Z., Storm, D., Yanagihara, T., Hori, M., and Matsumoto, M. (2001). Phosphorylation of cAMP response element-binding protein in hippocampal neurons as a protective response after exposure to glutamate in vitro and ischemia in vivo. J. Neurosci.21:9204–9213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maletic-Savatic, M., Malinow, R., and Svoboda, K. (1999). Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science283:1923–1927. [DOI] [PubMed] [Google Scholar]
- Malinow, R., Mainen, Z., and Hayashi, Y. (2000). LTP mechanisms: From silence to four-lane traffic. Curr. Opin. Neurobiol.10:352–357. [DOI] [PubMed] [Google Scholar]
- Maren, S., Tocco, G., Standley, S., Baudry, M., and Thompson, R. (1993). Postsynaptic factors in the expression of long-term potentiation (LTP): Increased glutamate receptor binding following LTP induction in vivo. Proc. Natl. Acad. Sci. U.S.A.90:9654–9658. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin, S., Grimwood, P., and Morris, R. (2000). Synaptic plasticity and memory: An evaluation of the hypothesis. Annu. Rev. Neurosci.23:649–711. [DOI] [PubMed] [Google Scholar]
- Mayford, M., Bach, M., Huang, Y., Wang, L., Hawkins, R., and Kandel, E. (1996). Control of memory formation through regulated expression of a CaMKII transgene. Science274:1678–1683. [DOI] [PubMed] [Google Scholar]
- McGlade-McCulloh, E., Yamamoto, H., Tan, S., Brickey, D., and Soderling, T. (1993). Phosphorylation and regulation of glutamate receptors by calcium/calmodulin-dependent protein kinase II. Nature362:640–642. [DOI] [PubMed] [Google Scholar]
- Moriya, T., Kouzu, Y., Shibata, S., Kadotani, H., Fukunaga, K., Miyamoto, E., and Yoshioka, T. (2000). Close linkage between calcium/calmodulin kinase II alpha/beta and NMDA-2A receptors in the lateral amygdala and significance for retrieval of auditory fear conditioning. Eur. J. Neurosci.12:3307–3314. [DOI] [PubMed] [Google Scholar]
- Otmakhov, N., Griffith, L., and Lisman, J. (1997). Postsynaptic inhibitors of Cap2C/calmodulin-dependent protein kinase type II block induction but not maintenance of pairing induced long-term potentiation. J. Neurosci.17:5357–5365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ouyang,Y., Rosenstein, A., Kreiman,G., Schuman, E., and Kennedy, M. (1999). Tetanic stimulation leads to increased accumulation of Ca2C/calmodulin-dependent protein kinase II via dendritic protein synthesis in hippocampal neurons. J. Neurosci.19:7823–7833. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richter-Levin, G., and Yaniv, D. (2001). Is LTP in the hippocampus a useful model for learning-related alterations in gene expression? Rev. Neurosci.12:289–296. [DOI] [PubMed] [Google Scholar]
- Sacchetti, B., Lorenzini, C., Baldi, E., Bucherelli, C., Roberto, M., Tassoni, G., and Brunelli, M. (2001). Long-lasting hippocampal potentiation and contextual memory consolidation. Eur. J. Neurosci.13:2291–2298. [DOI] [PubMed] [Google Scholar]
- Shaywitz, A., and Greenberg, M. (1999). CREB: A stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu. Rev. Biochem.68:821–861. [DOI] [PubMed] [Google Scholar]
- Shen, K., and Meyer, T. (1999). Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science284:162–166. [DOI] [PubMed] [Google Scholar]
- Shi, S., Hayashi, Y., Petralia, R., Zaman, S., Wenthold, R., Svoboda, K., and Malinow, R. (1999). Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science284:1811–1816. [DOI] [PubMed] [Google Scholar]
- Shimomura, A., Ogawa, Y., Kitani, T., Fujisawa, H., and Hagiwara, H. (1996). Calmodulin-dependent protein kinase II potentiates transcriptional activation through activating transcription factor 1 but not cAMP response element-binding protein. J. Biol. Chem.271:17957–17960. [DOI] [PubMed] [Google Scholar]
- Shors, T., and Matzel, L. (1997). Long-term potentiation:What's learning got to do with it? Behav. Brain Sci.20:597–614. [DOI] [PubMed] [Google Scholar]
- Silva, A., Paylor, R., Wehner, J., and Tonegawa, S. (1992). Impaired spatial learning in alpha-calciumcalmodulin kinase II mutant mice. Science257:206–211. [DOI] [PubMed] [Google Scholar]
- Solomonia, R., Kiguradze, T., McCabe, B., and Horn, G. (2000). Neural cell adhesion molecules, CaM kinase II and long-term memory in the chick. Neuroreport11:3139–3143. [DOI] [PubMed] [Google Scholar]
- Srinivasan, M., Edman, C., and Schulman, H. (1994). Alternative splicing introduces a nuclear localization signal that targets multifunctional CaM kinase to the nucleus. J. Cell. Biol.126:839–852. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strack, S., Barban, M., Wadzinski, B., and Colbran, R. (1997). Differential inactivation of postsynaptic density-associated and solubleCap2C/calmodulin-dependent protein kinase II by protein phosphatases 1 and 2A. J. Neurochem.68:2119–2128. [DOI] [PubMed] [Google Scholar]
- Strack, S., and Colbran, R. (1998). Autophosphorylation-dependent targeting of calcium/calmodulindependent protein kinase II by the NR2B subunit of the N-methyl-D-aspartate receptor. J. Biol. Chem.273:20689–20692. [DOI] [PubMed] [Google Scholar]
- Strack, S., Robison, A., Bass, M., and Colbran, R. (2000). Association of calcium/calmodulin-dependent kinase II with developmentally regulated splice variants of the postsynaptic density protein densin-180. J. Biol. Chem.275:25061–25064. [DOI] [PubMed] [Google Scholar]
- Szapiro, G., Izquierdo, L., Alonso, M., Barros, D., Paratcha, G., Ardenghi, P., Pereira, P., Medina, J. H., and Izquierdo, I. (2000). Participation of hippocampal metabotropic glutamate receptors, protein kinase A and mitogen-activated protein kinases in memory retrieval. Neuroscience99:1–5. [DOI] [PubMed] [Google Scholar]
- Tan, S., and Liang, K. (1996). Spatial learning alters hippocampal calcium/calmodulin-dependent protein kinase II activity in rats. Brain Res.711:234–240. [DOI] [PubMed] [Google Scholar]
- Tan, S., Wenthold, R., and Soderling, T. (1994). Phosphorylation of AMPA-type glutamate receptors by calcium/calmodulin-dependent protein kinase II and protein kinase C in cultured hippocampal neurons. J. Neurosci.14:1123–1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tocco,G., Maren, S., Shors, T., Baudry, M., and Thompson, R. (1992). Long-term potentiation is associated with increased 3H-AMPA binding in rat hippocampus. Brain Res.573:228–234. [DOI] [PubMed] [Google Scholar]
- Toni, N., Buchs, P., Nikonenko, I., Bron, C., and Muller, D. (1999). LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature402:421–425. [DOI] [PubMed] [Google Scholar]
- Vianna, M., Alonso, M., Viola, H., Quevedo, J., de Paris, F., Furman, M., de Stein, M., Medina, J., and Izquierdo, I. (2000). Role of hippocampal signaling pathways in long-term memory formation of a nonassociative learning task in the rat. Learn. Mem.7:333–340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walikonis, R., Oguni, A., Khorosheva, E., Jeng, C., Asuncion, F., and Kennedy, M. (2001). Densin-180 forms a ternary complex with the (alpha)-subunit of Ca2C/calmodulin-dependent protein kinase II and ®-actinin. J. Neurosci.21:423–4333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang, J., and Kelly, P. (1995). Postsynaptic injection of Ca2C/calmodulin induces synaptic potentiation requiring CaMKII and PKC activity. Neuron15:443–452. [DOI] [PubMed] [Google Scholar]
- Wolfman, C., Fin, C., Dias, M., Bianchin, M., Da Silva, R., Schmitz, P., Medina, J., and Izquierdo, I. (1994). Intrahippocampal or intraamygdala infusion of KN-62, a specific inhibitor of calcium/calmodulindependent protein kinase II, causes retrograde amnesia in the rat. Behav. Neural Biol.61:203–205. [DOI] [PubMed] [Google Scholar]
- Wu, X., and McMurray, C. (2001). Calmodulin kinase II attenuation of gene transcription by preventing cAMP response element-binding protein (CREB) dimerization and binding to the CREB-binding protein. J. Biol. Chem.276:1735–1741. [DOI] [PubMed] [Google Scholar]
- Yoshimura, Y., Aoi, C., and Yamauchi, T. (2000). Investigation of protein substrates of Ca2C/calmodulindependent protein kinase II translocated to the postsynaptic density. Brain Res. Mol. Brain Res.81:118–128. [DOI] [PubMed] [Google Scholar]
- Yoshimura, Y., Sogawa, Y., and Yamauchi, T. (1999). Protein phosphatase 1 is involved in the dissociation ofCa2C/calmodulin-dependent protein kinase II from postsynaptic densities.FEBSLett.446:239–242. [DOI] [PubMed] [Google Scholar]
- Zhao,W., Lawen, A., and Ng, K. (1999). Changes in phosphorylation of Ca2C/calmodulin-dependent protein kinase II (CaMKII) in processing of short-term and long-term memories after passive avoidance learning. J. Neurosci. Res.55:557–568. [DOI] [PubMed] [Google Scholar]