Skip to main content
Cellular and Molecular Neurobiology logoLink to Cellular and Molecular Neurobiology
. 2002 Dec;22(5-6):699–709. doi: 10.1023/A:1021805023906

Effect of Melatonin on Changes in Locomotor Activity Rhythm of Syrian Hamsters Injected with Beta Amyloid Peptide 25–35 in the Suprachiasmatic Nuclei

Analía M Furio 1, Rodolfo A Cutrera 1, Víctor Castillo Thea 1, Santiago Pérez Lloret 1, Patricia Riccio 1, Roberto L Caccuri 1, Luis I Brusco 1, Daniel P Cardinali 1
PMCID: PMC11533766  PMID: 12585689

Abstract

1. Alzheimer's disease is associated with circadian rhythm disturbances, probably because of beta amyloid-induced neuronal damage of hypothalamic suprachiasmatic nuclei (SCN).

2. Since there is no published study on the circadian consequences of injecting beta amyloid peptide in experimental animals, one objective of the present study was to examine circadian locomotor activity in Syrian hamsters injected with beta amyloid peptide 25–35 into both SCN.

3. Because one of the proposed therapies for circadian alterations in dementia is the administration of melatonin, a chronobiotic agent with antioxidant properties, the preventive effect of melatonin on the circadian changes produced by beta amyloid microinjection into SCN was also assessed.

4. Wheel running activity was recorded by using the Dataquest III system in male golden hamsters kept under 14:10 light–dark photoperiods. Animals received microinjections of beta amyloid peptide 25–35 (100 μM solution, 1 μL) or saline in each SCN. Only those animals with neuronal lesions larger than 10% of SCN after beta amyloid injection were considered for further analysis.

5. To assess the effect of melatonin on beta-amyloid peptide activity, melatonin was given in the drinking water (25 μg/mL) starting 15 days in advance to the microinjection of beta amyloid peptide into SCN.

6. Beta amyloid-treated hamsters exhibited a significant phase advance of onset of running activity of about 22 min as compared to saline-injected animals. They also showed a significantly greater variability in onset time of wheel running activity, mainly evident from 6 to 15 days of treatment.

7. Melatonin administration in the drinking water prevented the phase advance of onset time and the increased variability of onset time brought about by beta amyloid peptide.

8. The results support the existence of a neuroprotective effect of melatonin on beta amyloid-induced circadian changes in hamsters.

Keywords: melatonin, suprachiasmatic nucleus, circadian rhythms, beta amyloid peptide, neuroprotection, Alzheimer's disease

REFERENCES

  1. Brusco, L. I., Marquez, M., and Cardinali, D. P. (1998a). Melatonin treatment stabilizes chronobiologic and cognitive symptoms in Alzheimer's disease. Neuroendocrinol. Lett.19:111–115. [PubMed] [Google Scholar]
  2. Brusco, L. I., Marquez, M., and Cardinali, D. P. (1998b). Monozygotic twins with Alzheimer's disease treated with melatonin: Case report. J. Pineal Res.25:260–263. [DOI] [PubMed] [Google Scholar]
  3. Cardinali, D. P., Brusco, L. I., Liberczuk, C., and Furio, A.M. (2002a). The use of melatonin in Alzheimer's disease. Neuroendocrinol. Lett.23(Suppl. 1):26–29. [PubMed] [Google Scholar]
  4. Cardinali, D. P., Gvozdenovich, E., Kaplan, M. R., Fainstein, I., Shifis, H. A., Pérez Lloret, S., Albornoz, L. E., and Negri, A. (2002b).Adouble blind-placebo controlled study on melatonin efficacy to reduce anxiolytic benzodiazepine use in the elderly. Neuroendocrinol. Lett.23:55–60. [PubMed] [Google Scholar]
  5. Cardinali, D. P., and Pevet, P. Basic aspects of melatonin action. (1998). Sleep Med. Rev.2:175–190. [DOI] [PubMed] [Google Scholar]
  6. Cohen-Mansfield, J., Garfinkel, D., and Lipson, S. (2000). Melatonin for treatment of sundowning in elderly persons with dementia. Arch. Gerontol. Geriatr.31:65–76. [DOI] [PubMed] [Google Scholar]
  7. Dori, D., Casale, G., Solerte, S. B., Fioravanti, M., Migliorati, G., Cuzzoni, G., and Ferrari, E. (1994). Chrono-neuroendocrinological aspects of physiological aging and senile dementia. Chronobiologia21:121–126. [PubMed] [Google Scholar]
  8. Fainstein, I., Bonetto, A., Brusco, L. I., and Cardinali, D. P. (1997). Effects of melatonin in elderly patients with sleep disturbance. A pilot study. Curr. Ther. Res.58:990–1000. [Google Scholar]
  9. Flood, J. F., Moriey, J. E., and Roberts, E. (1991). An amnestic effect in mice of four synthetic peptides homologous to amyloid ¯ protein from patients with Alzheimer's disease. Proc. Natl. Acad. Sci.U.S.A.88:3363–3366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Girotti, L., Lago, M., Yanovsky, O., Carbajales, J., Elizari, M., Brusco, L. I., and Cardinali, D. P. (2000). Low urinary 6-sulphatoxymelatonin levels in patients with coronary artery disease. J. Pineal Res.29:138–142. [DOI] [PubMed] [Google Scholar]
  11. Giubilei, F., Patacchioli, F. R., Antonini, G., Sepe, M. M., Tisei, P., Bastianello, S., Monnazzi, P., and Angelucci, L. (2001). Altered circadian cortisol secretion in Alzheimer's disease: Clinical and neuroradiological aspects. J. Neurosci. Res.66:262–265. [DOI] [PubMed] [Google Scholar]
  12. Haass, C., Schlossmacher, M. G., Hung, A. Y., Vigo-Pelfrey, C., Mellon, A., and Ostaszewski, B. L. (1992). Amyloid ¯-peptide is produced by cultured cells during normal metabolism. Nature359:322–325. [DOI] [PubMed] [Google Scholar]
  13. Harper, D. G., Stopa, E. G., McKee, A. C., Satlin, A., Harlan, P. C., Goldstein, R., and Volicer, L. (2001). Differential circadian rhythm disturbances in men with Alzheimer disease and frontotemporal degeneration. Arch. Gen. Psychiatry58:353–360. [DOI] [PubMed] [Google Scholar]
  14. Hoogendijk, W. J., van Someren, E. J., Mirmiran, M., Hofman, M. A., Lucassen, P. J., Zhou, J. N., and Swaab, D. E. (1996). Circadian rhythm-related behavioral disturbances and structural hypothalamic changes in Alzheimer's disease. Int. Psychogeriatr.8:245–252. [DOI] [PubMed] [Google Scholar]
  15. Iguchi, H., Kato, K. I., and Ibayashi, H. (1982). Age-dependent reduction in serum melatonin concentrations in healthy human subjects. J. Clin. Endocrinol. Metab.55:27–29. [DOI] [PubMed] [Google Scholar]
  16. Jean-Louis, G., Zizi, F., von Gizycki, H., and Taub, H. (1998). Effects of melatonin in two individuals with Alzheimer's disease. Percept. Mot. Skills87:331–339. [DOI] [PubMed] [Google Scholar]
  17. Kontush, A., Mann,U., Ant, S., Ujeyl, A., Lürs, C., Müller-Thomsen, T., and Beisiegel,U. (2001). Influence of vitamin E and C supplementation on lipoprotein oxidation in patients with Alzheimer's disease. Free Rad. Biol. Med.31:345–354. [DOI] [PubMed] [Google Scholar]
  18. Liu, R. Y., Zhou, J. N., van Heerikhuize, J., Hofman, M. A., and Swaab, D. F. (1999). Decreased melatonin levels in postmortem cerebrospinal fluid in relation to aging, Alzheimer's disease, and apolipoprotein E-epsilon4/4 genotype. J. Clin. Endocrinol. Metab.84:323–327. [DOI] [PubMed] [Google Scholar]
  19. Loo, D. T., Copani, A., Pike, C. J., Whittemore, E. R., Wa0lencewicz, A. J., and Cotman, C. W. (1993). Apoptosis is induced by ¯-amyloid in culture central nervous system neurons. Proc. Natl. Acad. Sci. U.S.A.90:7951–7955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Luboshitzky, R., Shen-Orr, Z., Tzischichinsky, O., Maldonado, M., Herer, P., and Lavie, P. (2001). Actigraphic sleep-wake patterns and urinary 6-sulfatoxymelatonin excretion in patients with Alzheimer's disease. Chronobiol. Int.18:513–524. [DOI] [PubMed] [Google Scholar]
  21. Mattson, M. P., Cheng, B., Davis, D., Bryant, K., Lieberburg, I., and Rydel, R. E. (1992). ¯-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J. Neurosci.12:376–389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McCurry, S. M., Reynolds, C. F., Ancoli-Israel, S., Teri, L., and Vitiello, M. V. (2000). Treatment of sleep disturbance in Alzheimer's disease. Sleep Med. Rev.4:603–628. [DOI] [PubMed] [Google Scholar]
  23. Mesulam, M. M. (1999). Neuroplasticity failure in Alzheimer's disease: bridging the gap between plaques and tangles. Neuron24:521–529. [DOI] [PubMed] [Google Scholar]
  24. Miranda, S., Opaza, C., Larrondo, L. F., Muñoz, F. J., Ruiz, F., Leighton, F., and Inestrosa, N. C. (2000). The role of oxidative stress in the toxicity induced by amyloid ¯-peptide in Alzheimer's disease. Prog. Neurobiol.62:633–648. [DOI] [PubMed] [Google Scholar]
  25. Mishima, K., Okawa, M., Hozumi, S., and Hishikawa, Y. (2000). Supplementary administration of artificial bright light and melatonin as potent treatment for disorganized circadian rest-activity and dysfunctional autonomic and neuroendocrine systems in institutionalized demented elderly persons. Chronobiol. Int.17:419–432. [DOI] [PubMed] [Google Scholar]
  26. Mishima, K., Okawa, M., Shimizu, T., and Hishikawa, Y. (2001). Diminished melatonin secretion in the elderly caused by insufficient environmental illumination. J. Clin. Endocrinol. Metab.86:129–134. [DOI] [PubMed] [Google Scholar]
  27. Monti, J. M., and Cardinali, D. P. (2000). A critical assessment of melatonin effect on sleep in humans. Biol. Signals Recept.9:328–339. [DOI] [PubMed] [Google Scholar]
  28. Nitta, A., Itoh, A., Hasegawa, T., and Naveshima, T. (1994). ¯-amyloid protein-induced Alzheimer's disease animal model. Neurosci. Lett.170:63–66. [DOI] [PubMed] [Google Scholar]
  29. Pappolla, M. A., Chyan, Y., Poeggeler, B., Frangione, B., Wilson, G., Ghiso, J., and Reiter, R. J. (2000). An assessment of the antioxidant and the antiamyloidogenic properties of melatonin: Implications for Alzheimer's disease. J. Neural Transm.107:203–231. [DOI] [PubMed] [Google Scholar]
  30. Pappolla, M. A., Sos, M., Omar, R. A., Bick, R. J., Hickson-Bick, D. L., Reiter, R. J., Efthimiopoulos, S., and Robakis, N. K. (1997). Melatonin prevents death of neuroblastoma cells exposed to the Alzheimer amyloid peptide. J. Neurosci.17:1683–1690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Reiter, R. J., Acuña-Castroviejo,D., Tan, D. X., and Burkhardt, S. (2001). Free radical-mediated molecular damage. Mechanisms for the protective actions of melatonin in the central nervous system. Ann. N.Y. Acad. Sci.939:200–215. [PubMed] [Google Scholar]
  32. Reiter, R. J., Cabrera, J., Sainz, R. M., Mayo, J. C., Manchester, L. C., and Tan, D. X. (1999). Melatonin as a pharmacological agent against neuronal loss in experimental models of Huntington's disease, Alzheimer's disease and Parkinsonism. Ann. N.Y. Acad. Sci.890:471–485. [DOI] [PubMed] [Google Scholar]
  33. Reiter, R. J., Tan, D. X., Acuña-Castroviejo, D., Burkhardt, S., and Karbownik, M. (2000). Melatonin: Mechanisms and actions as an antioxidant. Curr. Top. Biophys.24:171–183. [Google Scholar]
  34. Sano, M., Ernesto, C., Thomas, R. G., Klauber, M. R., Schafer, K., Grundman, M., Woodbury, P., Growdon, J., and Corman, C.W. (1997). A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer's disease. N. Engl. J. Med.336:1216–1222. [DOI] [PubMed] [Google Scholar]
  35. Savaskan, E., Olivieri, G., Meier, F., Brydon, L., Jockers, R., Ravid, R., and Wirz-Justice, A. (2002). Increased melatonin 1a-receptor immunoreactivity in the hippocampus of Alzheimer's disease patients. J. Pineal Res.32:59–62. [DOI] [PubMed] [Google Scholar]
  36. Sayre, L. M., Smith, M. A., and Perry, G. (2001). Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr. Med. Chem.8:721–738. [DOI] [PubMed] [Google Scholar]
  37. Selkoe, D. J. (1991). The molecular pathology of Alzheimer's disease. Nature6:487–498. [DOI] [PubMed] [Google Scholar]
  38. Shearman, M. S., Ragan, C. I., and Iversen, L. L. (1994). Inhibition of PC12 cell redox activity is a specific, early indicator of the mechanism of ¯-amyloid-mediated cell death. Proc. Natl. Acad. Sci. U.S.A.91:1470–1474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Shen, Y. X., Xu, S. Y., Wei,W., Sun, X. X., Liu, L. H., Yang, J., and Dong, C. (2002). The protective effects of melatonin from oxidative damage induced by amyloid beta-peptide 25–35 in middle-aged rats. J. Pineal Res.32:85–89. [DOI] [PubMed] [Google Scholar]
  40. Siegrist, C., Benedetti, C., Orlando, A., Beltran, J. M., Tuchscherr, L., Noseda, C. M., Brusco, L. I., and Cardinali, D. P. (2001). Lack of changes in serum prolactin, FSH, TSH, and estradiol after melatonin treatment in doses that improve sleep and reduce benzodiazepine consumption in sleep-disturbed, middle-aged, and elderly patients. J. Pineal Res.30:34–42. [DOI] [PubMed] [Google Scholar]
  41. Skinner, D. C., and Malpaux, B. (1999). High melatonin concentrations in third ventricular cerebrospinal fluid are not due to Galen vein blood recirculating through the choroid plexus. Endocrinology140:4399–4405. [DOI] [PubMed] [Google Scholar]
  42. Smith, M. A., Hirai, K., Hsiao, K., Pappolla, M. A., Harris, P. L., Siedlak, S. L., Tabaton, M., and Perry, G. (1998). Amyloid-beta deposition in Alzheimer transgenic mice is associated with oxidative stress. J. Neurochem.70:2212–2215. [DOI] [PubMed] [Google Scholar]
  43. Smith, M. A., Rottakamp, C. A., Nunomura, A., Rama, A. K., and Perry, G. (2000). Oxidative stress in Alzheimer's disease. Biochim. Biophys. Acta1502:139–144. [DOI] [PubMed] [Google Scholar]
  44. Swabb, D. F., Fliers, E., and Partiman, T. S. (1985). The suprachiasmatic nucleus of the human brain in relation to sex, age and senile dementia. Brain Res342:37–44. [DOI] [PubMed] [Google Scholar]
  45. Taylor, J. L., Friedman, L., Sheikh, J., and Yesavage, J. A. Assessment and management of “sundowning” phenomena. (1997). Semin. Clin. Neuropsychiatry2:113–122. [DOI] [PubMed] [Google Scholar]
  46. van Someren, E. J.W. (2000). Circadian rhythms and sleep in human aging. Chronobiol. Int.17:233–243. [DOI] [PubMed] [Google Scholar]
  47. Vassar, R., Bennett, B. D., Babu-Khan, S., Kahn, S., Mendiaz, E. A., Denis, P., Teplow, D. B., Ross, S., Amarante, P., Loeloff, R., Luo, Y., Fisher, S., Fuller, J., Edenson, S., Lile, J., Jarosinski, M. A., Biere, A. L., Curran, E., Burgess, T., Louis, J. C., Collins, F., Treanor, J., Rogers, G., and Citron, M. (1999). Secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science286:735–741. [DOI] [PubMed] [Google Scholar]
  48. Weiss, J. H., Pike, C. J., and Cotman, C. W. (1994). Ca2C channel blockers attenuate ¯-amyloid peptide toxicity to cortical neurons in culture. J. Neurochem.62:372–375. [DOI] [PubMed] [Google Scholar]

Articles from Cellular and Molecular Neurobiology are provided here courtesy of Springer

RESOURCES