Abstract
1. Cyclophilin A (CyP-A), a soluble cytoplasmic immunophilin, is known for its involvement in T cell differentiation and proliferation. Although CyP-A has a pivotal role in the immune response, it is most highly concentratedin brain, where its functions are largely unknown.
2. We reported previously that a murine neuroblastoma (NB-P2) cellline can partially differentiate into neurons when treated with cyclosporin A (CyS-A), implicating a role for CyP-A in neuronal differentiation (Hovland et al. [1999]. Neurochem. Int. 3:229–235).
3. The role of CyP-A in regulating neuronal growth and differentiation is not well defined. To investigate this, we first tested the utility of retroviral-mediated gene transfer and expression in human embryonic brain (HEB) and NB-P2 cells. Second, we examined the effects of retroviral-mediated overexpression or antisense-mediated reduction of CyP-A in HEB and NB-P2 cells.
4. Our data show that retroviral vectors are efficient for stable gene transfer and expression in both cell lines. Moreover, neither overexpression nor reduction of CyP-A expression in NB-P2 cells altered the growth rate or induced differentiation. More importantly, the up- or down-regulation of CyP-A expressiondid not affect the magnitude of cAMP-induced NB-P2 differentiation. However, overexpression of CyP-A increased the growth rate of HEB cells.
5. In summary, the utility of retroviral vectors for stable gene expression in human embryonic brain and murine neuroblastoma cells was shown. Furthermore,a novel role for CyP-A in augmenting the proliferation of human embryonic braincells was demonstrated in vitro.
Keywords: human embryonic brain, murine neuroblastoma, growth, differentiation, cyclophilin A, cAMP, prostaglandins, gene expression, antisense expression, retroviral vectors, green fluorescent protein
REFERENCES
- Bennett, P. C., Singaretnam, L. G., Zhao W. Q., Lawen, A., and Ng, K. T. (1998). Peptidylprolyl-cis/transisomerase activity may be necessary for memory formation. FEBS Lett.431:386-390. [DOI] [PubMed] [Google Scholar]
- Burns, J. C., Friedmann, T., Driever, W., Burrascano, M., and Yee, J.-K. (1993). Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: Concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc. Natl. Acad. Sci. USA90:8033-8037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crenshaw, D. G., Yang, J., Means, A. R., and Kornbluth, S. (1998). The mitotic peptidylprolyl isomerase, Pin 1, interacts with Cde25 and Plx1. EMBO J.17:1315-1327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crompton, M., Virji, S., and Ward, J. M. (1998). Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore. Eur. J. Biochem.258:729-735. [DOI] [PubMed] [Google Scholar]
- Doyle, V., Virji, S., and Crompton, M. (1999). Evidence that cyclophilin-A protects cells against oxidative stress. Biochem. J.341:127-132. [PMC free article] [PubMed] [Google Scholar]
- Friday, B. B., Horsley, V., and Pavlath, G. K. (2000). Calcineurin activity is required for the initiation of skeletal muscle differentiation. J. Cell. Biol.149:657-666. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fukuda, K., Tanigawa, Y., Fujii, G., Yasugi, S., and Hirohashi, S. (1998). cFKBP/SMAP; a novel molecule involved in the regulation of smooth muscle differentiation. Development125:3535-3542. [DOI] [PubMed] [Google Scholar]
- Gold, B. G. (1999). FK506 and the role of the immunophilin. FKBP-52 in nerve regeneration. Drug Metab. Rev.3:649-663. [DOI] [PubMed] [Google Scholar]
- Gold, B. G., Zeleny-Pooley, M., Wang, M. S., Chaturvedi, P., and Armistead, D. M. (1997). A nonimmuno-suppressant FKBP-12 ligand increases nerve regeneration. Exp. Neurol.147:269-278. [DOI] [PubMed] [Google Scholar]
- Gothel, S. F., and Marahiel, M. A. (1999). Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cell. Mol. Life Sci.55:423-436. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hasel, K. W., and Sutcliffe, J. G. (1990). Nucleotide sequence of a cDNA coding for mouse cyclophilin. Nucleic Acids Res.18:4019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ho, S., Clipstone, N., Timmermann, L., Northrop, J., Graef, I., Fiorentino, D., Nourse, J., and Crabtree, G. R. (1996). The mechanism of action of cyclosporin A and FK506. Clin. Immunol. Immunopathol.80:40-45. [DOI] [PubMed] [Google Scholar]
- Hovland, A. R., La Rosa, F. G., Hovland, P. G., Cole, W. C., Kumar, A., Prasad, J.-E., and Prasad, K. N. (1999). Cyclosporin A regulates the levels of cyclophilin A in neuroblastoma cells in culture. Neurochem. Int.3:229-235. [DOI] [PubMed] [Google Scholar]
- Ivery, M. T. (1999). A proposed molecular model for the interaction of calcineurin with the cyclosporin A-cyclophilin A complex. Bioorg. Med. Chem.7:1389-1402. [DOI] [PubMed] [Google Scholar]
- Khaspekov, L., Friberg, H., Halestrap, A., Viktorov, I., and Wieloch, T. (1999). Cyclosporin A and its nonimmunosuppressive analogue N-Me-Val-4-cyclosporin A mitigate glucose/oxygen deprivation-induced damage to rat cultured hippocampal neurons. Eur. J. Neurosci.11:3194-3198. [DOI] [PubMed] [Google Scholar]
- Kumar, M., and Carmichael, G. G. (1998). Antisense RNA: Function and fate of duplex RNA in cells of higher eukaryotes. Microbiol. Mol. Biol. Rev.62:1415-1434. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kumar, B., Hovland, A., Prasad, J.-E., Clarkson, E., Cole, W. C., Nahreini, P., Freed, C. R., and Prasad, K. N. (2001). Establishment of cell lines from human embryonic brain cells: Relevant to neural transplant studies. In Vitro Cell. Dev. Biol. in press. [DOI] [PubMed]
- Lombardi, T., and Fiore-Donno, G. (1993). Distribution of neural and neural-crest-related antigens in human dental pulp by immunohistochemistry. Acta Anat. (Basel)147:35-39. [DOI] [PubMed] [Google Scholar]
- Lu, P. J., Wulf, G., Zhou, X. Z., Davies, P., and Lu, K. P. (1999). The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature399:784-788. [DOI] [PubMed] [Google Scholar]
- Luo, Z. D., Wang, Y., Werlen, G., Camp, S., Chien, K. R., and Taylor, P. (1999). Calcineurin enhances acetylcholinesterase mRNA stability during C2-C12 muscle cell differentiation. Mol. Pharmacol.56:886-894. [PubMed] [Google Scholar]
- Marzo, I., Brenner, C., Zamzami, N., Susin, S. A., Beutner, G., Brdiczka, D., Remy, R., Xie, Z. H., Reed, J. C., and Kroemer, G. (1998). The permeability transition pore complex: A target for apoptosis regulation by caspases and bcl-2-related proteins. J. Exp. Med.187:1261-1271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller, A. D., and Rosman, G. J. (1989). Improved retroviral vectors for gene transfer and expression. Biotechniques7:2-8. [PMC free article] [PubMed] [Google Scholar]
- Pear, W. S., Nolan, G. P., Scott, M. L., and Baltimore, D. (1993). Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA90:8392-8396. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prasad, K. N., Carvalho, E., Kentroti, S., Prasad, J.-E., La Rosa, F. G., Kumar, S., Freed, C. R., and Vernadakis, A. (1994). Production of terminally differentiated neuroblastoma cells in culture. Restor. Neurol. Neurosci.7:13-19. [DOI] [PubMed] [Google Scholar]
- Prasad, K. N., and Hsie, A. W. (1971). Morphological differentiation of mouse neuroblastoma cells induced in vitro by dibutyryl adenosine 3′,5′-cyclic monophosphate. Nature New Biol.233:141-142. [DOI] [PubMed] [Google Scholar]
- Ruhlmann, A., and Nordheim, A. (1997). Effects of the immunosuppressive drugs CsA and FK506 on intracellular signalling and gene regulation. Immunobiology198:192-206. [DOI] [PubMed] [Google Scholar]
- Ryffel, B., Woerly, G., Quesniaux, V. F., Husi, H., and Foxwell, B. M. (1992). Covalent binding of cyclosporine inhibits irreversibly T-lymphocyte activation. Biochem. Pharmacol.43:953-960. [DOI] [PubMed] [Google Scholar]
- Sabatini, D. M., Lai, M. M., and Snyder, S. H. (1997). Neural roles of immunophilins and their ligands. Mol. Neurobiol.15:223-239. [DOI] [PubMed] [Google Scholar]
- Shen, M., Stukenberg, P. T., Kirschner, M. W., and Lu, K. P. (1998). The essential mitotic peptidyl-prolyl isomerase Pin1 binds and regulates mitosis-specific phosphoproteins. Genes Dev.12:706-720. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sherry, B., Zybarth, G., Alfano, M., Dubrovsky, L., Mitchell, R., Rich, D., Ulrich, P., Bucala, R., Cerami, A., and Bukrinsky, M. (1998). Role of cyclophilin A in the uptake of HIV-1 by macrophages and T lymphocytes. Proc. Natl. Acad. Sci. USA95:1758-1763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sigal, N. H., and Dumont, F. J. (1992). Cyclosporin A, FK-506, and rapamycin: Pharmacologic probes of lymphocyte signal transduction. Annu. Rev. Immunol.10:519-560. [DOI] [PubMed] [Google Scholar]
- Standaert, R. F., Galat, A., Verdine, G. L., and Schreiber, S. L. (1990). Molecular cloning and overexpression of the human FK506-binding protein FKBP. Nature346:671-674. [DOI] [PubMed] [Google Scholar]
- Steiner, J. P., Connolly, M. A., Valentine, H. L., Hamilton, G. S., Dawson, T. M., Hester, L., and Snyder, S. H. (1997). Neurotrophic actions of nonimmunosuppressive analogues of immunosuppressive drugs FK506, rapamycin and cyclosporin A. Nat. Med.3:421-428. [DOI] [PubMed] [Google Scholar]
- Weiss, B., Davidkova, G., and Zhou, L. W. (1999). Antisense RNA gene therapy for studying and modulating biological processes. Cell. Mol. Life Sci.55:334-358. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winter, C., Schenkel, J., Burger, E., Eickmeier, C., Zimmermann, M., and Herdegen, T. (2000). The immunophilin ligand FK506, but not GPI-1046, protects against neuronal death and inhibits c-Jun expression in the substantia nigra pars compacta following transection of the rat medial forebrain bundle. Neuroscience95:753-762. [DOI] [PubMed] [Google Scholar]