Abstract
A system was developed in which it is possible to detect in vivo changes in hepatic H2O2 production, using a combination of the catalase inhibitor, 3-amino-1,2,4-triazole and methanol. In mice, starvation significantly increases hepatic H2O2 production and plasma non-esterified fatty acid concentrations. Short-term refeeding after a 24 h starvation period brings H2O2 production and plasma non-esterified fatty acid concentration back to normal in 3h. Administration of insulin 24 h after the onset of starvation normalizes H2O2 production in less than 2h and decreases non-esterified fatty acid concentration below normal values. The suppression by insulin of H2O2 production, as well as its coherence with plasma non-esterified fatty acid concentration, indicate that increased H2O2 production in starved mice reflects peroxisomal beta-oxidation.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baudhuin P. Isolation of rat liver peroxisomes. Methods Enzymol. 1974;31:356–368. doi: 10.1016/0076-6879(74)31039-7. [DOI] [PubMed] [Google Scholar]
- Beynen A. C. Short-term regulation of hepatic carbohydrate and lipid metabolism by insulin and glucagon. Endokrinologie. 1982 Oct;80(2):238–252. [PubMed] [Google Scholar]
- Beynen A. C., Vaartjes W. J., Geelen M. J. Acute effects of insulin on fatty acid metabolism in isolated rat hepatocytes. Horm Metab Res. 1980 Sep;12(9):425–430. doi: 10.1055/s-2007-999166. [DOI] [PubMed] [Google Scholar]
- Bieberdorf F. A., Chernick S. S., Scow R. O. Effect of insulin and acute diabetes on plasma FFA and ketone bodies in the fasting rat. J Clin Invest. 1970 Sep;49(9):1685–1693. doi: 10.1172/JCI106386. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blum J. W., Froehli D., Kunz P. Effects of catecholamines on plasma free fatty acids in fed and fasted cattle. Endocrinology. 1982 Feb;110(2):452–456. doi: 10.1210/endo-110-2-452. [DOI] [PubMed] [Google Scholar]
- Bradley J. R., Macdonald I. A. Effects of prior fasting and of glucose availability on fatty-acid-induced increases in oxygen consumption in the rat perfused liver. Ann Nutr Metab. 1982;26(1):37–43. doi: 10.1159/000176541. [DOI] [PubMed] [Google Scholar]
- Bremer J., Norum K. R. Metabolism of very long-chain monounsaturated fatty acids (22:1) and the adaptation to their presence in the diet. J Lipid Res. 1982 Feb;23(2):243–256. [PubMed] [Google Scholar]
- Bremer J. The effect of fasting on the activity of liver carnitine palmitoyltransferase and its inhibition by malonyl-CoA. Biochim Biophys Acta. 1981 Sep 24;665(3):628–631. doi: 10.1016/0005-2760(81)90282-4. [DOI] [PubMed] [Google Scholar]
- Brooks R. R., Pong S. F. Effects of fasting, body weight, methylcellulose, and carboxymethylcellulose on hepatic glutathione levels in mice and hamsters. Biochem Pharmacol. 1981 Mar 15;30(6):589–594. doi: 10.1016/0006-2952(81)90130-1. [DOI] [PubMed] [Google Scholar]
- Campbell J., Green G. R. Free fatty acid metabolism in Chinese hamsters. Can J Physiol Pharmacol. 1966 Jan;44(1):47–57. doi: 10.1139/y66-006. [DOI] [PubMed] [Google Scholar]
- Chance B., Oshino N. Analysis of the catalase--hydrogen peroxide intermediate in coupled oxidations. Biochem J. 1973 Mar;131(3):564–567. doi: 10.1042/bj1310564. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christiansen R. Z., Osmundsen H., Borrebaek B., Bremer J. The effects of clofibrate feeding on the metabolism of palmitate and erucate in isolated hepatocytes. Lipids. 1978 Jul;13(7):487–491. doi: 10.1007/BF02533618. [DOI] [PubMed] [Google Scholar]
- De Duve C., Baudhuin P. Peroxisomes (microbodies and related particles). Physiol Rev. 1966 Apr;46(2):323–357. doi: 10.1152/physrev.1966.46.2.323. [DOI] [PubMed] [Google Scholar]
- Falholt K., Lund B., Falholt W. An easy colorimetric micromethod for routine determination of free fatty acids in plasma. Clin Chim Acta. 1973 Jun 28;46(2):105–111. doi: 10.1016/0009-8981(73)90016-8. [DOI] [PubMed] [Google Scholar]
- Foerster E. C., Fährenkemper T., Rabe U., Graf P., Sies H. Peroxisomal fatty acid oxidation as detected by H2O2 production in intact perfused rat liver. Biochem J. 1981 Jun 15;196(3):705–712. doi: 10.1042/bj1960705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GORDON R. S., Jr, CHERKES A. Production of unesterified fatty acids from isolated rat adipose tissue incubated in vitro. Proc Soc Exp Biol Med. 1958 Jan;97(1):150–151. doi: 10.3181/00379727-97-23672. [DOI] [PubMed] [Google Scholar]
- Geerts A., Roels F. In vivo cooperation between hepatic catalase and superoxide dismutase demonstrated by diethyldithiocarbamate. FEBS Lett. 1982 Apr 19;140(2):245–247. doi: 10.1016/0014-5793(82)80904-6. [DOI] [PubMed] [Google Scholar]
- Harisch G. The effect of organic copper complexes on the glutathione status of the liver of fed and rats starved for 24 hours. Res Commun Chem Pathol Pharmacol. 1982 Aug;37(2):187–197. [PubMed] [Google Scholar]
- Harris R. A., Cornell N. W., Straight C., Veech R. L. Mechanism responsible for aminooxyacetate and glycolate stimulation of ethanol oxidation by isolated hepatocytes. Arch Biochem Biophys. 1982 Feb;213(2):414–425. doi: 10.1016/0003-9861(82)90567-7. [DOI] [PubMed] [Google Scholar]
- Haymond M. W., Karl I. E., Clarke W. L., Pagliara A. S., Santiago J. V. Differences in circulating gluconeogenic substrates during short-term fasting in men, women, and children. Metabolism. 1982 Jan;31(1):33–42. [PubMed] [Google Scholar]
- Isaacs J. T., Binkley F. Cyclic AMP-dependent control of the rat hepatic glutathione disulfide-sulfhydryl ratio. Biochim Biophys Acta. 1977 Jun 23;498(1):29–38. doi: 10.1016/0304-4165(77)90084-8. [DOI] [PubMed] [Google Scholar]
- Ishii H., Horie S., Suga T. Physiological role of peroxisomal beta-oxidation in liver of fasted rats. J Biochem. 1980 Jun;87(6):1855–1858. doi: 10.1093/oxfordjournals.jbchem.a132931. [DOI] [PubMed] [Google Scholar]
- Jones D. P., Thor H., Andersson B., Orrenius S. Detoxification reactions in isolated hepatocytes. Role of glutathione peroxidase, catalase, and formaldehyde dehydrogenase in reactions relating to N-demethylation by the cytochrome P-450 system. J Biol Chem. 1978 Sep 10;253(17):6031–6037. [PubMed] [Google Scholar]
- Kawamura N., Moser H. W., Kishimoto Y. Very long chain fatty acid oxidation in rat liver. Biochem Biophys Res Commun. 1981 Apr 30;99(4):1216–1225. doi: 10.1016/0006-291x(81)90749-x. [DOI] [PubMed] [Google Scholar]
- LOPEZ E., WHITE J. E., ENGEL F. L. Contrasting requirements for the lipolytic action of corticotropin and epinephrine on adipose tissue in vitro. J Biol Chem. 1959 Sep;234:2254–2258. [PubMed] [Google Scholar]
- Laker M. E., Mayes P. A. Regulation of 3-hydroxybutyrate formation and secretion of very-low-density-lipoprotein triacylglycerol by perfused livers from fed and starved rats. Biochem J. 1982 Aug 15;206(2):427–430. doi: 10.1042/bj2060427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MARGOLIASH E., NOVOGRODSKY A., SCHEJTER A. Irreversible reaction of 3-amino-1:2:4-triazole and related inhibitors with the protein of catalase. Biochem J. 1960 Feb;74:339–348. doi: 10.1042/bj0740339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mannaerts G. P., Debeer L. J., Thomas J., De Schepper P. J. Mitochondrial and peroxisomal fatty acid oxidation in liver homogenates and isolated hepatocytes from control and clofibrate-treated rats. J Biol Chem. 1979 Jun 10;254(11):4585–4595. [PubMed] [Google Scholar]
- McGarry J. D., Foster D. W. Importance of experimental conditions in evaluating the malonyl-CoA sensitivity of liver carnitine acyltransferase. Studies with fed and starved rats. Biochem J. 1981 Nov 15;200(2):217–223. doi: 10.1042/bj2000217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGarry J. D., Foster D. W. Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem. 1980;49:395–420. doi: 10.1146/annurev.bi.49.070180.002143. [DOI] [PubMed] [Google Scholar]
- McGarry J. D., Meier J. M., Foster D. W. The effects of starvation and refeeding on carbohydrate and lipid metabolism in vivo and in the perfused rat liver. The relationship between fatty acid oxidation and esterification in the regulation of ketogenesis. J Biol Chem. 1973 Jan 10;248(1):270–278. [PubMed] [Google Scholar]
- Murphy P. A., Krahling J. B., Gee R., Kirk J. R., Tolbert N. E. Enzyme activities of isolated hepatic peroxisomes from genetically lean and obese male mice. Arch Biochem Biophys. 1979 Mar;193(1):179–185. doi: 10.1016/0003-9861(79)90021-3. [DOI] [PubMed] [Google Scholar]
- Müller M. J., Paschen U., Seitz H. J. Starvation-induced ketone body production in the conscious unrestrained miniature pig. J Nutr. 1982 Jul;112(7):1379–1386. doi: 10.1093/jn/112.7.1379. [DOI] [PubMed] [Google Scholar]
- Neat C. E., Thomassen M. S., Osmundsen H. Effects of high-fat diets on hepatic fatty acid oxidation in the rat. Isolation of rat liver peroxisomes by vertical-rotor centrifugation by using a self-generated, iso-osmotic, Percoll gradient. Biochem J. 1981 Apr 15;196(1):149–159. doi: 10.1042/bj1960149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neat C. E., Thomassen M. S., Osmundsen H. Induction of peroxisomal beta-oxidation in rat liver by high-fat diets. Biochem J. 1980 Jan 15;186(1):369–371. doi: 10.1042/bj1860369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oshino N., Jamieson D., Chance B. The properties of hydrogen peroxide production under hyperoxic and hypoxic conditions of perfused rat liver. Biochem J. 1975 Jan;146(1):53–65. doi: 10.1042/bj1460053. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oshino N., Jamieson D., Sugano T., Chance B. Optical measurement of the catalase-hydrogen peroxide intermediate (Compound I) in the liver of anaesthetized rats and its implication to hydrogen peroxide production in situ. Biochem J. 1975 Jan;146(1):67–77. doi: 10.1042/bj1460067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osmundsen H., Neat C. E. Regulation of peroxisomal fatty acid oxidation. FEBS Lett. 1979 Nov 1;107(1):81–85. doi: 10.1016/0014-5793(79)80468-8. [DOI] [PubMed] [Google Scholar]
- PRAETORIUS E., POULSEN H. Enzymatic determination of uric acid; with detailed directions. Scand J Clin Lab Invest. 1953;5(3):273–280. doi: 10.3109/00365515309094197. [DOI] [PubMed] [Google Scholar]
- RABEN M. S., HOLLENBERG C. H. Effect of glucose and insulin on the esterification of fatty acids by isolated adipose tissue. J Clin Invest. 1960 Feb;39:435–439. doi: 10.1172/JCI104055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RECHCIGL M., Jr, PRICE V. E. Catalase synthesis and destruction in starvation. Experientia. 1961 Jun 15;17:258–259. doi: 10.1007/BF02161428. [DOI] [PubMed] [Google Scholar]
- Royle G. T., Wolfe R. R., Burke J. F. Glucose and fatty acid kinetics in fasted rats: effects of previous protein intake. Metabolism. 1982 Mar;31(3):279–283. doi: 10.1016/0026-0495(82)90065-8. [DOI] [PubMed] [Google Scholar]
- Rémésy C., Demigné C. Changes in availability of glucogenic and ketogenic substrates and liver metabolism in fed or starved rats. Ann Nutr Metab. 1983;27(1):57–70. doi: 10.1159/000176624. [DOI] [PubMed] [Google Scholar]
- Saggerson E. D. Does fasting decrease the inhibitory effect of malonyl-CoA on hepatic beta-oxidation? Biochem J. 1982 Nov 15;208(2):525–528. doi: 10.1042/bj2080525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seitz H. J., Müller M. J., Krone W., Tarnowski W. Coordinate control of intermediary metabolism in rat liver by the insulin/glucagon ratio during starvation and after glucose refeeding. Regulatory significance of long-chain acyl-CoA and cyclic AMP. Arch Biochem Biophys. 1977 Oct;183(2):647–663. doi: 10.1016/0003-9861(77)90399-x. [DOI] [PubMed] [Google Scholar]
- TEPHLY T. R., PARKS R. E., Jr, MANNERING G. J. METHANOL METABOLISM IN THE RAT. J Pharmacol Exp Ther. 1964 Mar;143:292–300. [PubMed] [Google Scholar]
- Uhal B. D., Roehrig K. L. Effect of dietary state on hepatocyte size. Biosci Rep. 1982 Dec;2(12):1003–1007. doi: 10.1007/BF01122168. [DOI] [PubMed] [Google Scholar]
- Williamson D. H., Lund P., Krebs H. A. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J. 1967 May;103(2):514–527. doi: 10.1042/bj1030514. [DOI] [PMC free article] [PubMed] [Google Scholar]