Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Mar 15;218(3):961–968. doi: 10.1042/bj2180961

The structure of the inhibitory complex of alloxanthine (1H-pyrazolo[3,4-d]pyrimidine-4,6-diol) with the molybdenum centre of xanthine oxidase from electron-paramagnetic-resonance spectroscopy.

T R Hawkes, G N George, R C Bray
PMCID: PMC1153429  PMID: 6326752

Abstract

Studies were carried out on the inhibitory complex of alloxanthine (1H-pyrazolo[3,4-d]pyrimidine-4,5-diol) with xanthine oxidase, in extension of the work of Williams & Bray [Biochem. J. (1981) 195, 753-760]. By suitable regulation of the reaction conditions, up to 10% of the functional enzyme could be converted into the complex in the Mo(V) oxidation state. The e.p.r. spectrum of the complex was investigated in detail with the help of computer simulation and substitution with stable isotopes. Close structural analogy of the signal-giving species to that of the Very Rapid intermediate in enzyme turnover is shown by g-values (2.0279, 1.9593 and 1.9442) and by coupling to 33S in the cyanide-labile site of the enzyme [A(33S) 0.30, 3.10 and 0.70mT]. However, whereas in the Very Rapid signal there is strong coupling to 17O [Gutteridge & Bray, Biochem. J. (1980) 189, 615-623], instead, in the Alloxanthine signal there is strong coupling to a single nitrogen atom [A(14N) 0.35, 0.35, 0.32 mT]. This is presumed to originate from the 2-position of the heterocyclic ring system. From this work and from earlier kinetic studies it is concluded that alloxanthine, after being bound reversibly at the active centre, reacts slowly with it, in a specific manner, distinct from that in the normal catalytic reaction with substrates. This reaction involves elimination of an oxygen ligand of molybdenum and co-ordination, in this site, of alloxanthine via the N-2 nitrogen atom, to give a complex that is structurally but not chemically closely analogous to that of the Very Rapid species.

Full text

PDF
961

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bordas J., Bray R. C., Garner C. D., Gutteridge S., Hasnain S. S. X-ray absorption spectroscopy of xanthine oxidase. The molybdenum centres of the functional and the desulpho forms. Biochem J. 1980 Nov 1;191(2):499–508. doi: 10.1042/bj1910499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bray R. C., Barber M. J., Lowe D. J. Electron-paramagnetic-resonance spectroscopy of complexes of xanthine oxidase with xanthine and uric acid. Biochem J. 1978 Jun 1;171(3):653–658. doi: 10.1042/bj1710653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bray R. C., Gutteridge S. Numbers and exchangeability with water of oxygen-17 atoms coupled to molybdenum (V) in different reduced forms of xanthine oxidase. Biochemistry. 1982 Nov 9;21(23):5992–5999. doi: 10.1021/bi00266a041. [DOI] [PubMed] [Google Scholar]
  4. Bray R. C. The reactions and the structures of molybdenum centers in enzymes. Adv Enzymol Relat Areas Mol Biol. 1980;51:107–165. doi: 10.1002/9780470122969.ch3. [DOI] [PubMed] [Google Scholar]
  5. Cammack R., Barber M. J., Bray R. C. Oxidation-reduction potentials of molybdenum, flavin and iron-sulphur centres in milk xanthine oxidase. Biochem J. 1976 Aug 1;157(2):469–478. doi: 10.1042/bj1570469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. George G. N., Bray R. C. Reaction of arsenite ions with the molybdenum center of milk xanthine oxidase. Biochemistry. 1983 Mar 1;22(5):1013–1021. doi: 10.1021/bi00274a003. [DOI] [PubMed] [Google Scholar]
  7. Gutteridge S., Bray R. C. Oxygen-17 splitting of the very rapid molybdenum(V) e.p.r. signal from xanthine oxidase. Rate of exchange with water of the coupled oxygen atom. Biochem J. 1980 Sep 1;189(3):615–623. doi: 10.1042/bj1890615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hart L. I., McGartoll M. A., Chapman H. R., Bray R. C. The composition of milk xanthine oxidase. Biochem J. 1970 Mar;116(5):851–864. doi: 10.1042/bj1160851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Malthouse J. P., Bray R. C. The nature of the sulphur atom liberated from xanthine oxidase by cyanide. Evidence from e.p.r. spectroscopy after 35S substitution. Biochem J. 1980 Oct 1;191(1):265–267. doi: 10.1042/bj1910265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Malthouse J. P., George G. N., Lowe D. J., Bray R. C. Coupling of [33S]sulphur to molybdenum(V) in different reduced forms of xanthine oxidase. Biochem J. 1981 Dec 1;199(3):629–637. doi: 10.1042/bj1990629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Massey V., Komai H., Palmer G., Elion G. B. On the mechanism of inactivation of xanthine oxidase by allopurinol and other pyrazolo[3,4-d]pyrimidines. J Biol Chem. 1970 Jun 10;245(11):2837–2844. [PubMed] [Google Scholar]
  12. Tanner S. J., Bray R. C., Bergmann F. 13C hyperfine splitting of some molybdenum electron-paramagnetic-resonance signals from xanthine oxidase [proceedings]. Biochem Soc Trans. 1978;6(6):1328–1330. doi: 10.1042/bst0061328. [DOI] [PubMed] [Google Scholar]
  13. Williams J. W., Bray R. C. Kinetic and e.p.r. studies on the inhibition of xanthine oxidase by alloxanthine (1 H-pyrazolo [3, 4-d] pyrimidine-4,6-diol). Biochem J. 1981 Jun 1;195(3):753–760. doi: 10.1042/bj1950753. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES