Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Apr 1;219(1):87–90. doi: 10.1042/bj2190087

Effects of adrenergic agents, vasopressin and ionophore A23187, on the phosphorylation of, and flux through, phenylalanine hydroxylase in rat liver cells.

M J Fisher, M A Santana, C I Pogson
PMCID: PMC1153451  PMID: 6426473

Abstract

The adrenergic amines noradrenaline and adrenaline increased flux through phenylalanine hydroxylase by approx. 50%. This effect, which appears to be mediated by an alpha-adrenergic mechanism, was accompanied by a rapid increase in the phosphorylation of phenylalanine hydroxylase. Although ionophore A23187 mimicked the effects of the adrenergic amines, vasopressin was completely without effect on either phenylalanine hydroxylation or enzyme phosphorylation. Flux through phenylalanine hydroxylase in young rats (80 g) was insensitive to alpha-adrenergic, but sensitive to beta-adrenergic, agents. Consistent with previous observations [Fisher & Pogson (1984) Biochem. J. 219, 79-85] the present data indicate a close correlation between phosphorylation state and flux rate (i.e. enzyme activity).

Full text

PDF
87

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abita J. P., Chamras H., Rosselin G., Rey F. Hormonal control of phenylalanine hydroxylase activity in isolated rat hepatocytes. Biochem Biophys Res Commun. 1980 Feb 12;92(3):912–918. doi: 10.1016/0006-291x(80)90789-5. [DOI] [PubMed] [Google Scholar]
  2. Abita J. P., Milstien S., Chang N., Kaufman S. In vitro activation of rat liver phenylalanine hydroxylase by phosphorylation. J Biol Chem. 1976 Sep 10;251(17):5310–5314. [PubMed] [Google Scholar]
  3. Assimacopoulos-Jeannet F., Denton R. M., Jeanrenaud B. Stimulation of hepatic lipogenesis and acetyl-coenzyme A carboxylase by vasopressin. Biochem J. 1981 Sep 15;198(3):485–490. doi: 10.1042/bj1980485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blair J. B., James M. E., Foster J. L. Adrenergic control of glucose output and adenosine 3':5'-monophosphate levels in hepatocytes from juvenile and adult rats. J Biol Chem. 1979 Aug 25;254(16):7579–7584. [PubMed] [Google Scholar]
  5. Bublitz C. Two mechanisms for the inhibition in vitro of phenylalanine hydroxylase by catecholamines. Biochem Pharmacol. 1971 Oct;20(10):2543–2553. doi: 10.1016/0006-2952(71)90162-6. [DOI] [PubMed] [Google Scholar]
  6. Carr F. P., Pogson C. I. Phenylalanine metabolism in isolated rat liver cells. Effects of glucagon and diabetes. Biochem J. 1981 Sep 15;198(3):655–660. doi: 10.1042/bj1980655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Castagna M., Takai Y., Kaibuchi K., Sano K., Kikkawa U., Nishizuka Y. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem. 1982 Jul 10;257(13):7847–7851. [PubMed] [Google Scholar]
  8. Dickson A. J., Pogson C. I. The metabolic integrity of hepatocytes in sustained incubations. FEBS Lett. 1977 Nov 1;83(1):27–32. doi: 10.1016/0014-5793(77)80634-0. [DOI] [PubMed] [Google Scholar]
  9. Donlon J., Beirne E. Modulations of rat hepatic phenylalanine hydroxylase due to induced diabetes or high-protein diet. Biochem Biophys Res Commun. 1982 Sep 30;108(2):746–751. doi: 10.1016/0006-291x(82)90892-0. [DOI] [PubMed] [Google Scholar]
  10. Donlon J., Kaufman S. Glucagon stimulation of rat hepatic phenylalanine hydroxylase through phosphorylation in vivo. J Biol Chem. 1978 Oct 10;253(19):6657–6659. [PubMed] [Google Scholar]
  11. Donlon J., Kaufman S. Relationship between the multiple forms of rat hepatic phenylalanine hydroxylase and degree of phosphorylation. J Biol Chem. 1980 Mar 10;255(5):2146–2152. [PubMed] [Google Scholar]
  12. Exton J. H. Molecular mechanisms involved in alpha-adrenergic responses. Mol Cell Endocrinol. 1981 Sep;23(3):233–264. doi: 10.1016/0303-7207(81)90123-4. [DOI] [PubMed] [Google Scholar]
  13. Garrison J. C., Borland M. K., Florio V. A., Twible D. A. The role of calcium ion as a mediator of the effects of angiotensin II, catecholamines, and vasopressin on the phosphorylation and activity of enzymes in isolated hepatocytes. J Biol Chem. 1979 Aug 10;254(15):7147–7156. [PubMed] [Google Scholar]
  14. Garrison J. C. The effects of glucagon, catecholamines, and the calcium ionophore A23187 on the phosphorylation of rat hepatocyte cytosolic proteins. J Biol Chem. 1978 Oct 10;253(19):7091–7100. [PubMed] [Google Scholar]
  15. Garrison J. C., Wagner J. D. Glucagon and the Ca2+-linked hormones angiotensin II, norepinephrine, and vasopressin stimulate the phosphorylation of distinct substrates in intact hepatocytes. J Biol Chem. 1982 Nov 10;257(21):13135–13143. [PubMed] [Google Scholar]
  16. Hasegawa H., Kaufman S. Spontaneous activation of phenylalanine hydroxylase in rat liver extracts. J Biol Chem. 1982 Mar 25;257(6):3084–3089. [PubMed] [Google Scholar]
  17. Hawkins P. T., Michell R. H., Kirk C. J. A simple assay method for determination of the specific radioactivity of the gamma-phosphate group of 32P-labelled ATP. Biochem J. 1983 Mar 15;210(3):717–720. doi: 10.1042/bj2100717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kiss Z., Mhina V. Rat liver plasma membranes contain a lipid-dependent protein kinase activity. FEBS Lett. 1982 Nov 1;148(1):131–134. doi: 10.1016/0014-5793(82)81258-1. [DOI] [PubMed] [Google Scholar]
  19. Kneer N. M., Lardy H. A. Regulation of gluconeogenesis by norepinephrine, vasopressin, and angiotensin II: a comparative study in the absence and presence of extracellular Ca2+1. Arch Biochem Biophys. 1983 Aug;225(1):187–195. doi: 10.1016/0003-9861(83)90022-x. [DOI] [PubMed] [Google Scholar]
  20. Miller M. R., Shiman R. Reversible inactivation of phenylalanine hydroxylase by catecholamines in cultured hepatoma cells. J Biol Chem. 1976 Jun 25;251(12):3671–3676. [PubMed] [Google Scholar]
  21. Nakamura T., Tomomura A., Noda C., Shimoji M., Ichihara A. Acquisition of a beta-adrenergic response by adult rat hepatocytes during primary culture. J Biol Chem. 1983 Aug 10;258(15):9283–9289. [PubMed] [Google Scholar]
  22. Niedel J. E., Kuhn L. J., Vandenbark G. R. Phorbol diester receptor copurifies with protein kinase C. Proc Natl Acad Sci U S A. 1983 Jan;80(1):36–40. doi: 10.1073/pnas.80.1.36. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Reed P. W., Lardy H. A. A23187: a divalent cation ionophore. J Biol Chem. 1972 Nov 10;247(21):6970–6977. [PubMed] [Google Scholar]
  24. Smith S. A., Pogson C. I. The metabolism of L-tryptophan by isolated rat liver cells. Effect of albumin binding and amino acid competition on oxidatin of tryptophan by tryptophan 2,3-dioxygenase. Biochem J. 1980 Mar 15;186(3):977–986. doi: 10.1042/bj1860977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Studer R. K., Borle A. B. Differences between male and female rats in the regulation of hepatic glycogenolysis. The relative role of calcium and cAMP in phosphorylase activation by catecholamines. J Biol Chem. 1982 Jul 25;257(14):7987–7993. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES