Abstract
Oxidative-decarboxylation rates of branched-chain amino acids in rat hemidiaphragm and of branched-chain 2-oxo acids in hemidiaphragm, soleus muscle and heart slices of 110-120 g rats were increased considerably by 3-4 days of starvation, when they were calculated from the specific radioactivity in the medium. When the supply from endogenous protein degradation to the oxidation-precursor pool was severely limited by transaminase inhibitors, oxidative-decarboxylation rates of branched-chain 2-oxo acids rose significantly. Since this apparent increase was relatively larger in preparations from fed rats than from 3-days-starved rats, the differences in oxidation rates with nutritional state became less or even not significant. With rat heart the smaller dilution of the oxidation precursor pool after starvation is in accordance with the reported decrease in protein breakdown. Since protein degradation increases with starvation in skeletal muscles, we suggest that the amino acid pool arising from protein degradation is more segregated from the oxidation precursor pool in muscles from starved than from fed rats. We conclude that starvation increases branched-chain amino acid and 2-oxo acid oxidation in skeletal and cardiac muscle considerably less than has been suggested by previous studies.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adibi S. A., Krzysik B. A., Morse E. L., Amin P. M., Allen E. R. Oxidative energy metabolism in the skeletal muscle: biochemical and ultrastructural evidence for adaptive changes. J Lab Clin Med. 1974 Apr;83(4):548–562. [PubMed] [Google Scholar]
- Crie J. S., Sanford C. F., Wildenthal K. Influence of starvation and refeeding on cardiac protein degradation in rats. J Nutr. 1980 Jan;110(1):22–27. doi: 10.1093/jn/110.1.22. [DOI] [PubMed] [Google Scholar]
- Curfman G. D., O'Hara D. S., Hopkins B. E., Smith T. W. Suppression of myocardial protein degradation in the rat during fasting. Effects of insulin, glucose, and leucine. Circ Res. 1980 Apr;46(4):581–589. doi: 10.1161/01.res.46.4.581. [DOI] [PubMed] [Google Scholar]
- Felig P. Amino acid metabolism in exercise. Ann N Y Acad Sci. 1977;301:56–63. doi: 10.1111/j.1749-6632.1977.tb38185.x. [DOI] [PubMed] [Google Scholar]
- Fulks R. M., Li J. B., Goldberg A. L. Effects of insulin, glucose, and amino acids on protein turnover in rat diaphragm. J Biol Chem. 1975 Jan 10;250(1):290–298. [PubMed] [Google Scholar]
- Goldberg A. L., Chang T. W. Regulation and significance of amino acid metabolism in skeletal muscle. Fed Proc. 1978 Jul;37(9):2301–2307. [PubMed] [Google Scholar]
- Goldberg A. L., Odessey R. Oxidation of amino acids by diaphragms from fed and fasted rats. Am J Physiol. 1972 Dec;223(6):1384–1391. doi: 10.1152/ajplegacy.1972.223.6.1384. [DOI] [PubMed] [Google Scholar]
- Goldberg A. L., Tischler M., DeMartino G., Griffin G. Hormonal regulation of protein degradation and synthesis in skeletal muscle. Fed Proc. 1980 Jan;39(1):31–36. [PubMed] [Google Scholar]
- Goodman M. N., McElaney M. A., Ruderman N. B. Adaptation to prolonged starvation in the rat: curtailment of skeletal muscle proteolysis. Am J Physiol. 1981 Oct;241(4):E321–E327. doi: 10.1152/ajpendo.1981.241.4.E321. [DOI] [PubMed] [Google Scholar]
- Hutson S. M., Zapalowski C., Cree T. C., Harper A. E. Regulation of leucine and alpha-ketoisocaproic acid metabolism in skeletal muscle. Effects of starvation and insulin. J Biol Chem. 1980 Mar 25;255(6):2418–2426. [PubMed] [Google Scholar]
- Li J. B., Goldberg A. L. Effects of food deprivation on protein synthesis and degradation in rat skeletal muscles. Am J Physiol. 1976 Aug;231(2):441–448. doi: 10.1152/ajplegacy.1976.231.2.441. [DOI] [PubMed] [Google Scholar]
- Li J. B., Higgins J. E., Jefferson L. S. Changes in protein turnover in skeletal muscle in response to fasting. Am J Physiol. 1979 Mar;236(3):E222–E228. doi: 10.1152/ajpendo.1979.236.3.E222. [DOI] [PubMed] [Google Scholar]
- Meikle A. W., Klain G. J. Effect of fasting and fasting-refeeding on conversion of leucine into CO 2 and lipids in rats. Am J Physiol. 1972 May;222(5):1246–1250. doi: 10.1152/ajplegacy.1972.222.5.1246. [DOI] [PubMed] [Google Scholar]
- Millward D. J., Garlick P. J., Nnanyelugo D. O., Waterlow J. C. The relative importance of muscle protein synthesis and breakdown in the regulation of muscle mass. Biochem J. 1976 Apr 15;156(1):185–188. doi: 10.1042/bj1560185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nissen S., Haymond M. W. Effects of fasting on flux and interconversion of leucine and alpha-ketoisocaproate in vivo. Am J Physiol. 1981 Jul;241(1):E72–E75. doi: 10.1152/ajpendo.1981.241.1.E72. [DOI] [PubMed] [Google Scholar]
- O'Hara D. S., Curfman G. D., Trumbull C. G., Smith T. W. A procedure for measuring the contributions of intracellular and extracellular tyrosine pools to the rate of myocardial protein synthesis. J Mol Cell Cardiol. 1981 Oct;13(10):925–940. doi: 10.1016/0022-2828(81)90291-1. [DOI] [PubMed] [Google Scholar]
- Peuhkurinen K. J., Hiltunen J. K., Hassinen I. E. Metabolic compartmentation of pyruvate in the isolated perfused rat heart. Biochem J. 1983 Jan 15;210(1):193–198. doi: 10.1042/bj2100193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rannels D. E., Low R. B., Youdale T., Volkin E., Longmore W. J. Use of radioisotopes in quantitative studies of lung metabolism. Fed Proc. 1982 Oct;41(12):2833–2839. [PubMed] [Google Scholar]
- Rennie M. J., Edwards R. H., Halliday D., Matthews D. E., Wolman S. L., Millward D. J. Muscle protein synthesis measured by stable isotope techniques in man: the effects of feeding and fasting. Clin Sci (Lond) 1982 Dec;63(6):519–523. doi: 10.1042/cs0630519. [DOI] [PubMed] [Google Scholar]
- Schneible P. A., Airhart J., Low R. B. Differential compartmentation of leucine for oxidation and for protein synthesis in cultured skeletal muscle. J Biol Chem. 1981 May 25;256(10):4888–4894. [PubMed] [Google Scholar]
- Sherwin R. S. Effect of starvation on the turnover and metabolic response to leucine. J Clin Invest. 1978 Jun;61(6):1471–1481. doi: 10.1172/JCI109067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shinnick F. L., Harper A. E. Branched-chain amino acid oxidation by isolated rat tissue preparations. Biochim Biophys Acta. 1976 Jul 21;437(2):477–486. doi: 10.1016/0304-4165(76)90016-7. [DOI] [PubMed] [Google Scholar]
- Thomas L. K., Ittmann M., Cooper C. The role of leucine in ketogenesis in starved rats. Biochem J. 1982 May 15;204(2):399–403. doi: 10.1042/bj2040399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tischler M. E., Desautels M., Goldberg A. L. Does leucine, leucyl-tRNA, or some metabolite of leucine regulate protein synthesis and degradation in skeletal and cardiac muscle? J Biol Chem. 1982 Feb 25;257(4):1613–1621. [PubMed] [Google Scholar]
- Tischler M. E., Goldberg A. L. Amino acid degradation and effect of leucine on pyruvate oxidation in rat atrial muscle. Am J Physiol. 1980 May;238(5):E480–E486. doi: 10.1152/ajpendo.1980.238.5.E480. [DOI] [PubMed] [Google Scholar]
- Veerkamp J. H., van Hinsbergh V. W., Cordewener J. H. Degradation of branched-chain amino acids and 2-oxo acids in human and rat muscle. Biochem Med. 1980 Oct;24(2):118–129. doi: 10.1016/0006-2944(80)90003-4. [DOI] [PubMed] [Google Scholar]
- WAALKES T. P., UDENFRIEND S. A fluorometric method for the estimation of tyrosine in plasma and tissues. J Lab Clin Med. 1957 Nov;50(5):733–736. [PubMed] [Google Scholar]
- Wagenmakers A. J., Veerkamp J. H. Degradation of branched-chain amino acids and their derived 2-oxo acids and fatty acids in human and rat heart and skeletal muscle. Biochem Med. 1982 Aug;28(1):16–31. doi: 10.1016/0006-2944(82)90051-5. [DOI] [PubMed] [Google Scholar]
- Wallyn C. S., Vidrich A., Airhart J., Khairallah E. A. Analysis of the specific radioactivity of valine isolated from aminoacyl-transfer ribonucleic acid of rat liver. Biochem J. 1974 Jun;140(3):545–548. doi: 10.1042/bj1400545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wheatley D. N. On the problem of linear incorporation of amino acids into cell protein. Experientia. 1982 Jul 15;38(7):818–820. doi: 10.1007/BF01972291. [DOI] [PubMed] [Google Scholar]
