Abstract
The cation-binding properties of the vitamin D-dependent Ca2+-binding protein from pig duodenum were investigated, mainly by flow dialysis. The protein bound two Ca2+ ions with high affinity, and Mg2+, Mn2+ and K+ were all bound competitively with Ca2+ at both sites. The sites were distinguished by their different affinities for Mn2+, the one with the higher affinity being designated A (Kd 0.61 +/- 0.02 microM) and the other B (Kd 50 +/- 6 microM). Competitive binding studies allied to fluorimetric titration with Mg2+ showed that site A bound Ca2+, Mg2+ and K+ with Kd values of 4.7 +/- 0.8 nM, 94 +/- 18 microM and 1.6 +/- 0.3 mM respectively, and site B bound the same three cations with Kd values of 6.3 +/- 1.8 nM, 127 +/- 38 microM and 2.1 +/- 0.6 mM. For the binding of these cations, therefore, there was no significant difference between the two sites. In the presence of 1 mM-Mg2+ and 150 mM-K+, both sites bound Ca2+ with an apparent Kd of 0.5 microM. The cation-binding properties were discussed relative to those of parvalbumin, troponin C and the vitamin D-dependent Ca2+-binding protein from chick duodenum.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barker W. C., Dayhoff M. O. Evolution of homologous physiological mechanisms based on protein sequence data. Comp Biochem Physiol B. 1979;62(1):1–5. doi: 10.1016/0305-0491(79)90002-6. [DOI] [PubMed] [Google Scholar]
- Bredderman P. J., Wasserman R. H. Chemical composition, affinity for calcium, and some related properties of the vitamin D dependent calcium-binding protein. Biochemistry. 1974 Apr 9;13(8):1687–1694. doi: 10.1021/bi00705a021. [DOI] [PubMed] [Google Scholar]
- Bruns M. E., Fleisher E. B., Avioli L. V. Control of vitamin D-dependent calcium-binding protein in rat intestine by growth and fasting. J Biol Chem. 1977 Jun 25;252(12):4145–4150. [PubMed] [Google Scholar]
- Bryant D. T., Andrews P. A simple procedure for purifying mammalian duodenal Ca2+-binding proteins on a 100 mg scale and an investigation of the stoichiometry of their high-affinity binding of Ca2+ ions. Biochem J. 1983 Jun 1;211(3):709–716. doi: 10.1042/bj2110709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cavé A., Daures M. F., Parello J., Saint-Yves A., Sempere R. NMR studies of primary and secondary sites of parvalbumins using the two paramagnetic probes Gd (III) and Mn (II). Biochimie. 1979;61(7):755–765. doi: 10.1016/s0300-9084(79)80270-9. [DOI] [PubMed] [Google Scholar]
- Chiba K., Ohyashiki T., Mohri T. Quantitative analysis of calcium binding to porcine intestinal calcium-binding protein. J Biochem. 1983 Feb;93(2):487–493. doi: 10.1093/oxfordjournals.jbchem.a134203. [DOI] [PubMed] [Google Scholar]
- Feldmann K. New devices for flow dialysis and ultrafiltration for the study of protein--ligand interactions. Anal Biochem. 1978 Jul 15;88(1):225–235. doi: 10.1016/0003-2697(78)90414-1. [DOI] [PubMed] [Google Scholar]
- Fullmer C. S., Wasserman R. H. The amino acid sequence of bovine intestinal calcium-binding protein. J Biol Chem. 1981 Jun 10;256(11):5669–5674. [PubMed] [Google Scholar]
- Haiech J., Derancourt J., Pechère J. F., Demaille J. G. Magnesium and calcium binding to parvalbumins: evidence for differences between parvalbumins and an explanation of their relaxing function. Biochemistry. 1979 Jun 26;18(13):2752–2758. doi: 10.1021/bi00580a010. [DOI] [PubMed] [Google Scholar]
- Haiech J., Vallet B., Aquaron R., Demaille J. G. Ligand binding to macromolecules: determination of binding parameters by combined use of ligand buffers and flow dialysis; application to calcium-binding proteins. Anal Biochem. 1980 Jun;105(1):18–23. doi: 10.1016/0003-2697(80)90416-9. [DOI] [PubMed] [Google Scholar]
- Hitchman A. J., Harrison J. E. Calcium binding proteins in the duodenal mucosa of the chick, rat, pig, and human. Can J Biochem. 1972 Jul;50(7):758–765. doi: 10.1139/o72-106. [DOI] [PubMed] [Google Scholar]
- Hofmann T., Kawakami M., Hitchman A. J., Harrison J. E., Dorrington K. J. The amino acid sequence of porcine intestinal calcium-binding protein. Can J Biochem. 1979 Jun;57(6):737–748. doi: 10.1139/o79-092. [DOI] [PubMed] [Google Scholar]
- Kronman M. J., Bratcher S. C. An experimental artifact in the use of chelating metal ion buffers. Binding of chelators to bovine alpha-lactalbumin. J Biol Chem. 1983 May 10;258(9):5707–5709. [PubMed] [Google Scholar]
- Potter J. D., Gergely J. The calcium and magnesium binding sites on troponin and their role in the regulation of myofibrillar adenosine triphosphatase. J Biol Chem. 1975 Jun 25;250(12):4628–4633. [PubMed] [Google Scholar]
- Szebenyi D. M., Obendorf S. K., Moffat K. Structure of vitamin D-dependent calcium-binding protein from bovine intestine. Nature. 1981 Nov 26;294(5839):327–332. doi: 10.1038/294327a0. [DOI] [PubMed] [Google Scholar]
- Waisman D. M., Rasmussen H. A reexamination of the chelex competitive calcium binding assay. Cell Calcium. 1983 Apr;4(2):89–105. doi: 10.1016/0143-4160(83)90038-6. [DOI] [PubMed] [Google Scholar]
