Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Apr 1;219(1):287–292. doi: 10.1042/bj2190287

Investigation of the binding of Ca2+, Mg2+, Mn2+ and K+ to the vitamin D-dependent Ca2+-binding protein from pig duodenum.

D T Bryant, P Andrews
PMCID: PMC1153475  PMID: 6721858

Abstract

The cation-binding properties of the vitamin D-dependent Ca2+-binding protein from pig duodenum were investigated, mainly by flow dialysis. The protein bound two Ca2+ ions with high affinity, and Mg2+, Mn2+ and K+ were all bound competitively with Ca2+ at both sites. The sites were distinguished by their different affinities for Mn2+, the one with the higher affinity being designated A (Kd 0.61 +/- 0.02 microM) and the other B (Kd 50 +/- 6 microM). Competitive binding studies allied to fluorimetric titration with Mg2+ showed that site A bound Ca2+, Mg2+ and K+ with Kd values of 4.7 +/- 0.8 nM, 94 +/- 18 microM and 1.6 +/- 0.3 mM respectively, and site B bound the same three cations with Kd values of 6.3 +/- 1.8 nM, 127 +/- 38 microM and 2.1 +/- 0.6 mM. For the binding of these cations, therefore, there was no significant difference between the two sites. In the presence of 1 mM-Mg2+ and 150 mM-K+, both sites bound Ca2+ with an apparent Kd of 0.5 microM. The cation-binding properties were discussed relative to those of parvalbumin, troponin C and the vitamin D-dependent Ca2+-binding protein from chick duodenum.

Full text

PDF
287

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barker W. C., Dayhoff M. O. Evolution of homologous physiological mechanisms based on protein sequence data. Comp Biochem Physiol B. 1979;62(1):1–5. doi: 10.1016/0305-0491(79)90002-6. [DOI] [PubMed] [Google Scholar]
  2. Bredderman P. J., Wasserman R. H. Chemical composition, affinity for calcium, and some related properties of the vitamin D dependent calcium-binding protein. Biochemistry. 1974 Apr 9;13(8):1687–1694. doi: 10.1021/bi00705a021. [DOI] [PubMed] [Google Scholar]
  3. Bruns M. E., Fleisher E. B., Avioli L. V. Control of vitamin D-dependent calcium-binding protein in rat intestine by growth and fasting. J Biol Chem. 1977 Jun 25;252(12):4145–4150. [PubMed] [Google Scholar]
  4. Bryant D. T., Andrews P. A simple procedure for purifying mammalian duodenal Ca2+-binding proteins on a 100 mg scale and an investigation of the stoichiometry of their high-affinity binding of Ca2+ ions. Biochem J. 1983 Jun 1;211(3):709–716. doi: 10.1042/bj2110709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cavé A., Daures M. F., Parello J., Saint-Yves A., Sempere R. NMR studies of primary and secondary sites of parvalbumins using the two paramagnetic probes Gd (III) and Mn (II). Biochimie. 1979;61(7):755–765. doi: 10.1016/s0300-9084(79)80270-9. [DOI] [PubMed] [Google Scholar]
  6. Chiba K., Ohyashiki T., Mohri T. Quantitative analysis of calcium binding to porcine intestinal calcium-binding protein. J Biochem. 1983 Feb;93(2):487–493. doi: 10.1093/oxfordjournals.jbchem.a134203. [DOI] [PubMed] [Google Scholar]
  7. Feldmann K. New devices for flow dialysis and ultrafiltration for the study of protein--ligand interactions. Anal Biochem. 1978 Jul 15;88(1):225–235. doi: 10.1016/0003-2697(78)90414-1. [DOI] [PubMed] [Google Scholar]
  8. Fullmer C. S., Wasserman R. H. The amino acid sequence of bovine intestinal calcium-binding protein. J Biol Chem. 1981 Jun 10;256(11):5669–5674. [PubMed] [Google Scholar]
  9. Haiech J., Derancourt J., Pechère J. F., Demaille J. G. Magnesium and calcium binding to parvalbumins: evidence for differences between parvalbumins and an explanation of their relaxing function. Biochemistry. 1979 Jun 26;18(13):2752–2758. doi: 10.1021/bi00580a010. [DOI] [PubMed] [Google Scholar]
  10. Haiech J., Vallet B., Aquaron R., Demaille J. G. Ligand binding to macromolecules: determination of binding parameters by combined use of ligand buffers and flow dialysis; application to calcium-binding proteins. Anal Biochem. 1980 Jun;105(1):18–23. doi: 10.1016/0003-2697(80)90416-9. [DOI] [PubMed] [Google Scholar]
  11. Hitchman A. J., Harrison J. E. Calcium binding proteins in the duodenal mucosa of the chick, rat, pig, and human. Can J Biochem. 1972 Jul;50(7):758–765. doi: 10.1139/o72-106. [DOI] [PubMed] [Google Scholar]
  12. Hofmann T., Kawakami M., Hitchman A. J., Harrison J. E., Dorrington K. J. The amino acid sequence of porcine intestinal calcium-binding protein. Can J Biochem. 1979 Jun;57(6):737–748. doi: 10.1139/o79-092. [DOI] [PubMed] [Google Scholar]
  13. Kronman M. J., Bratcher S. C. An experimental artifact in the use of chelating metal ion buffers. Binding of chelators to bovine alpha-lactalbumin. J Biol Chem. 1983 May 10;258(9):5707–5709. [PubMed] [Google Scholar]
  14. Potter J. D., Gergely J. The calcium and magnesium binding sites on troponin and their role in the regulation of myofibrillar adenosine triphosphatase. J Biol Chem. 1975 Jun 25;250(12):4628–4633. [PubMed] [Google Scholar]
  15. Szebenyi D. M., Obendorf S. K., Moffat K. Structure of vitamin D-dependent calcium-binding protein from bovine intestine. Nature. 1981 Nov 26;294(5839):327–332. doi: 10.1038/294327a0. [DOI] [PubMed] [Google Scholar]
  16. Waisman D. M., Rasmussen H. A reexamination of the chelex competitive calcium binding assay. Cell Calcium. 1983 Apr;4(2):89–105. doi: 10.1016/0143-4160(83)90038-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES